精英家教网 > 高中数学 > 题目详情

【题目】已知两个命题p:sinx+cosx>m,q:x2+mx+1>0.如果对任意x∈R,p与q有且仅有一个是真命题.求实数m的取值范围.

【答案】【解答】
解:∵
∴当p是真命题时,m<
又∵对任意x∈R,q为真命题,
x2+mx+1>0恒成立,
有Δ=m2-4<0,∴-2<m<2.
∴当p为真,q为假时,m< ,且m≤-2或m≥2,
即m≤-2,
当p为假,q为真时,m≥ 且-2<m<2,即 ≤m<2,
综上,实数m的取值范围是m≤-2或 ≤m<2.
【解析】因为p与q有且仅有一个是真命题,所以p、q一真一假;判断命题的真假,直接利用相关定义、定理、公理判断即可。
【考点精析】认真审题,首先需要了解全称命题(全称命题,它的否定;全称命题的否定是特称命题).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=ln(2﹣x)[x﹣(3m+1)]的定义域为集合A,集合B={x| <0}
(1)当m=3时,求A∩B;
(2)求使BA的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-5:不等式选讲】

已知函数f(x)=|x+1|+|x-3|.

(1)若关于x的不等式f(x)<a有解,求实数a的取值范围:

(2)若关于x的不等式f(x)<a的解集为(b, ),求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分如图椭圆的离心率短轴的两个端点分别为B1、B2焦点为F1、F2四边形F1 B1F2 B2的内切圆半径为

1求椭圆C的方程

2过左焦点F1的直线交椭圆于M、N两点交直线于点P试证为定值并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题是全称命题还是特称命题,并判断其真假;写出这些命题的否定并判断真假.
(1)三角形的内角和为180°;
(2)每个二次函数的图象都开口向下;
(3)存在一个四边形不是平行四边形;
(4);
(5).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x+y+m=0与圆x2+y2=4交于不同的两点A,B,O是坐标原点, ,则实数m的取值范围是(
A.[﹣2,2]
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)
(1)若a=2,求A∪B和A∩B
(2)若RA∪B=RA,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.已知购买一张彩票中奖的概率为 ,则购买1000张这种彩票一定能中奖
B.互斥事件一定是对立事件
C.如图,直线l是变量x和y的线性回归方程,则变量x和y相关系数在﹣1到0之间
D.若样本x1 , x2 , …xn的方差是4,则x1﹣1,x2﹣1,…xn﹣1的方差是3

查看答案和解析>>

同步练习册答案