【题目】已知函数,则下列判断正确的是( )
A.为奇函数
B.对任意,,则有
C.对任意,则有
D.若函数有两个不同的零点,则实数m的取值范围是
【答案】CD
【解析】
根据函数的奇偶性以及单调性判断AB选项;对进行分类讨论,判断C选项;对选项D,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m的取值范围.
对于A选项,当时,,则
所以函数不是奇函数,故A错误;
对于B选项,的对称轴为,的对称轴为
所以函数在区间上单调递增,函数在区间上单调递增,并且
所以在上单调递增
即对任意,都有
则,故B错误;
对于C选项,当时,,则
则
当时,,则
当时,,则
则
即对任意,则有,故C正确;
对于D选项,当时,,则不是该函数的零点
当时,
令函数,函数
由题意可知函数与函数的图象有两个不同的交点
因为时,,时,
所以
当时,设,
因为,所以,即
设,,即
所以函数在区间上单调递减,在区间上单调递增
同理可证,函数在区间上单调递减,在区间上单调递增
函数图象如下图所示
由图可知,要使得函数与函数的图象有两个不同的交点
则实数m的取值范围是,故D正确;
故选:CD
科目:高中数学 来源: 题型:
【题目】设函数(,且)是定义域为R的奇函数.
(1)求t的值;
(2)若,求使不等式对一切恒成立的实数k的取值范围;
(3)若函数的图象过点,是否存在正数m(),使函数在上的最大值为0,若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某网站的程序员中随机抽取名统计其年龄数据如下表:
年龄 | 23 | 26 | 27 | 30 | 32 | 34 | 38 |
人数 | 1 | 3 | 3 | 5 | 4 | 3 | 1 |
(1)求这名程序员的平均年龄及年龄的众数、中位数;
(2)若这名程序员中年龄不超过岁,且学历是研究生及其以上有人,岁以上且学历是本科及其以下有人,完成下面的列联表,并判断是否有%的把握认为该网站程序员的学历与年龄有关.
年龄≤30 | 年龄>30 | |
学历研究生及其以上 | ||
学历本科及其以下 |
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P是抛物线C:上任意一点,过点P作直线PH⊥x轴,点H为垂足.点M是直线PH上一点,且在抛物线的内部,直线l过点M交抛物线C于A、B两点,且点M是线段AB的中点.
(1)证明:直线l平行于抛物线C在点P处切线;
(2)若|PM|=, 当点P在抛物线C上运动时,△PAB的面积如何变化?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M,N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,线段MN的中点A的横坐标为.
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B,求点B的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:①与所成角的正切值为;②;③;④平面平面,其中正确的命题序号为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左焦点为,过点的直线交椭圆于,两点,的最大值是,的最小值是,且满足.
(1)求椭圆的离心率;
(2)设线段的中点为,线段的垂直平分线与轴、轴分别交于,两点,是坐标原点,记的面积为,的面积为,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com