设函数f(x)=-4,其中向量=(2cosx,1),=(cosx,sin2x),x∈R.
(Ⅰ)若f(x)=-3-且x∈[-,],求x的值;
(Ⅱ)试求这个函数的最大值、最小值,并求出取得最值时相应的x的值.
科目:高中数学 来源:2011-2012学年浙江省高三3月月考理科数学试卷(解析版) 题型:解答题
设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函数 g(x) 的图象在点 (0,0) 处的切线也恰为 f (x) 图象的一条切线,求实数 a的值;
(Ⅱ)是否存在实数a,对任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范围;若不存在,请说明理由.
注:e是自然对数的底数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com