精英家教网 > 高中数学 > 题目详情

【题目】某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )

A.48B.72C.84D.168

【答案】D

【解析】

分两步,第一步选2名理科班的学生检查文科班,第二步,理科班检查的方法,需要分三类,根据分布和分类计数原理可得.

第一步:选2名理科班的学生检查文科班,有

第二步:分三类

2名文科班的学生检查剩下的2名理科生所在的班级,2名理科生检查

2名理科生所在的班级,有

2名文科班的学生检查去文科班检查的2名理科生所在班级,剩下的2名理科生

互查所在的班级,有

2名文科生一人去检查去文科班检查的2名理科生所在的班级的一个和一人去

检查剩下的2名理科生其中一个所在的班级,有

根据分步分类技术原理可得,共有不同的安排方法

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】围建一个面积为40平方米的矩形场地,要求矩形场地的一面利用旧墙(旧墙足够长),利用的旧墙需维修,其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2米的进出口,如图所示,已知旧墙的维修费用为5/米,新墙的造价为20/米,设利用的旧墙的长度为(单位:米),修建此矩形场地围墙的总费用为(单位:元)

1)将表示为的函数;

2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是关于的方程的两个虚数根,若在复平面上对应的点构成直角三角形,那么实数_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是给定的平面向量,且为非零向量,关于的分解,有如下个命题:

给定向量,总存在向量,使得

给定不共线向量,总存在实数,使得

给定向量和整数,总存在单位向量和实数,使得

给定正数,总存在单位向量和单位向量,使得

若上述命题中的向量在同一平面内且两两不共线,则其中真命题的序号为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于曲线,若存在非负实常数,使得曲线上任意一点成立(其中为坐标原点),则称曲线为既有外界又有内界的曲线,简称有界曲线,并将最小的外界成为曲线的外确界,最大的内界成为曲线的内确界.

1)曲线与曲线是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由;

2)已知曲线上任意一点到定点的距离之积为常数,求曲线的外确界与内确界.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙二人轮流掷一枚质地均匀的骰子,甲先掷.规定:若甲掷出1点,则由甲继续掷,否则下一次由乙掷;若乙掷出3点,则由乙继续掷,否则下一次由甲掷,两人始终按此规则进行.记第次由甲掷的概率为,则____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸xmm)之间近似满足关系式bc为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:

尺寸xmm

38

48

58

68

78

88

质量y (g)

16.8

18.8

20.7

22.4

24

25.5

质量与尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

Ⅰ)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望;

Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:

75.3

24.6

18.3

101.4

ⅰ)根据所给统计量,求y关于x的回归方程

ⅱ)已知优等品的收益(单位:千元)与的关系为,则当优等品的尺寸x为何值时,收益的预报值最大?(精确到0.1)

附:对于样本 ,其回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求的最小值;

(Ⅱ)若有两个零点,求参数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,平面侧面,且

(Ⅰ)求证:

(Ⅱ)若直线与平面所成角的大小为,求锐二面角的大小.

查看答案和解析>>

同步练习册答案