精英家教网 > 高中数学 > 题目详情
[2014·嘉兴联考]为了判断高中三年级学生选修文科是否与性别有关,现随机抽取50名学生,得到如下2×2列联表:
 
理科
文科
合计

13
10
23

7
20
27
合计
20
30
50
 
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2≈4.844,则认为选修文科与性别有关系出错的可能性约为______.
5%
由K2=4.844>3.841.
故认为选修文科与性别有关系出错的可能性约为5%.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:请观察图形,求解下列问题:

(1)79.5~89.5这一组的频率、频数分别是多少?
(2)估计这次环保知识竞赛的及格率(60分及以上为及格)和平均分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某校开设街舞选修课程,在选修的学生中,有男生28人,女生21人.若采用分层抽样的方法从中抽取一个容量为14的样本,则应抽取的女生人数为(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若对于预报变量y与解释变量x的10组统计数据的回归模型中,计算R2=0.95,又知残差平方和为120.55,那么的值为( )
A.241.1B.245.1C.2411D.2451

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)(2011•广东)在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n
1
2
3
4
5
成绩xn
70
76
72
70
72
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③某项测量结果ξ服从正态分布,则
④对于两个分类变量X与Y的随机变量k2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大.以上命题中其中真命题的个数为()
A.4 B.3C.2  D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2014·黄石模拟)根据下面的列联表
 
嗜酒
不嗜酒
总计
患肝病
7 775
42
7 817
未患肝病
2 099
49
2 148
总计
9 874
91
9 965
 
得到如下几个判断:①在犯错误的概率不超过0.001的前提下认为患肝病与嗜酒有关;②在犯错误的概率不超过0.01的前提下认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能小于1%;④认为患肝病与嗜酒有关的出错的可能为10%.其中正确命题的个数为(  )
A.0          B.1         C.2          D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分 )
2013年国庆期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段后得到如下图的频率分布直方图.
(1)此调查公司在采样中,用到的是什么抽样方法?
(2)求这40辆小型车辆车速的中位数的估计值;
(3)若从车速在的车辆中任抽取3辆,求抽出的3辆车中车速在的车辆数的分布列及数学期望.

查看答案和解析>>

同步练习册答案