精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程;

(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.

【答案】(1);(2).

【解析】

(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθxρsinθyρ2x2+y2可得曲线C的直角坐标方程;

(2)联立直线l的参数方程与x24y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.

解:(1)ρ+ρcos2θ8sinθ中两边同时乘以ρρ2+ρ2cos2θsin2θ)=8ρsinθ

x2+y2+x2y28y,即x24y

所以曲线C的直角坐标方程为:x24y

(2)联立直线l的参数方程与x24y得:(cosα2t24sinαt+40

AB两点对应的参数分别为t1t2

由△=16sin2α16cos2α0,得sinα

t1+t2,由|PM|

所以20sin2α+9sinα200,解得sinαsinα=﹣(舍去),

所以sinα

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A地的天气预报显示,A地在今后的三天中,每一天有强浓雾的概率为,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:

402  978  191  925  273  842  812  479  569  683

231  357  394  027  506  588  730  113  537  779

则这三天中至少有两天有强浓雾的概率近似为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.

1求分数在的频数及全班人数;

2求分数在之间的频数,并计算频率分布直方图中间矩形的高;

3若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数为常数,)的图象关于直线对称,则函数的图象(  )

A. 关于直线对称B. 关于直线对称

C. 关于点对称D. 关于点对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,点

中恰有三点在椭圆上.

(1)求椭圆的方程;

(2)设是椭圆上的动点,由原点向圆引两条切线,分别交椭圆于点,若直线的斜率存在,并记为,试问的面积是否为定值?若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为4EF分别是棱AB的中点,联结EFEEE.

求三棱锥的体积;

求直线与平面所成角的大小结果用反三角函数值表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间做AB型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张AB型桌子分别需要1小时和2小时,漆工油漆一张AB型桌子分别需要3小时和1小时;又知木工和漆工每天工作分别不得超过8小时和9小时,设该厂每天做AB型桌子分别为x张和y张.

1)试列出xy满足的关系式,并画出相应的平面区域;

2)若工厂做一张AB型桌子分别获得利润为2千元和3千元,那么怎样安排AB型桌子生产的张数,可使得所得利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论的单调性;

(2)设,若关于的不等式上有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,求函数的最小值;

若对任意,恒有成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案