精英家教网 > 高中数学 > 题目详情
12.已知函数y=ax(a>0且a≠1)是减函数,则下列函数图象正确的是(  )
A.B.C.D.

分析 利用指数函数的性质,直接判断a的范围,然后对应判断函数的图象即可.

解答 解:函数y=ax(a>0且a≠1)是减函数,是指数函数,a∈(0,1),
函数y=xa的图象为:
所以A不正确;
y=x-a,第一象限的图象为:第三象限也可能有图象.
所以B不正确;
y=logax,是减函数,所以选项C不正确;
y=loga(-x),定义域是x<0,是增函数,所以D正确.
故选:D.

点评 本题考查指数函数的图象的应用,函数的图象的判断,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.计算:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{7}{8}$)0+[(-2)3]${\;}^{-\frac{4}{3}}$+16${\;}^{-\frac{3}{4}}$+|-0.01|${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆的半径为2$\sqrt{3}$,圆心在y=2x上,且圆被直线x-y=0截得的弦长为4,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知直线l:ax+(a2-2)y+3=0与直线m:x-y-1=0互相垂直,其中a>0.
(1)求直线l的方程;
(2)点P坐标为(3,-1),求过点P与直线l平行的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于常数m、n,“mn<0”是“方程mx2+ny2=10的曲线是双曲线”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是(-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知AD为△ABC边BC的中线,且$\overrightarrow{AB}•\overrightarrow{AC}=-16,|{\overrightarrow{BC}}|=10$,则$|{\overrightarrow{AD}}|$=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F,且点F到双曲线的一条渐近线的距离为$\sqrt{3}$,若点P(2,$\sqrt{3}$)在该双曲线上,则该双曲线的离心率为(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{10}}{2}$C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC是边长为2的正三角形,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,给出下列四个结论.
①|$\overrightarrow{b}$|=1,②$\overrightarrow{a}$•$\overrightarrow{b}$=-1③$\overrightarrow{a}$⊥$\overrightarrow{b}$④(4$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{BC}$
其中正确结论的序号是②④.

查看答案和解析>>

同步练习册答案