精英家教网 > 高中数学 > 题目详情
已知三棱锥P-ABC的三条侧棱PA、PB、PC两两垂直,D是底面三角形内一点,且∠DPA=45°,∠DPB=60°,则∠DPC=
60°
60°
分析:构造一个以PD为体对角线的长方体,在这个几何体中设PA=1,在直角三角形中由∠DPA=45°,∠DPB=60°求出体对角线长和面对角线CD的长,即可得所求角
解答:解:过点D作平面垂直于PA,交PA于A点,交平面PAC于AE,交平面PAB于AM
过点D作平面垂直于PB,交PB于B点,交平面PBC于BF,交平面PAB于BM
过点D作平面垂直于PC,交PC于C点,交平面PAC于EC,交平面PBC于FC
则六面体APBM-ECFD是一个长方体
设PA=1,∵∠DPA=45°,∴PD=
2

∵∠DPB=60°∴PB=
2
2
,∴PM=
12+(
2
2
)
2
=
6
2

在直角三角形PCD中,CD=PM=
6
2
,PD=
2

∴sin∠DPC=
3
2

∴∠DPC=60°
故答案为60°
点评:本题考查了空间想象能力,构造几何体解决问题的能力,解题时要准确把握线线垂直和线面垂直,在直角三角形中解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥P-ABC的三条侧棱PA,PB,PC两两相互垂直,且PA=2
3
,PB=3,PC=2外接球的直径等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC中,PC⊥底面ABC,AB=BC,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)若AE:EP=1:2,求截面BEF分三棱锥P-ABC所成上、下两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥P-ABC,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB的中点,且△PDB是正三角形,PA⊥PC.
(I)求证:DM∥平面PAC;
(II)求证:平面PAC⊥平面ABC;
(Ⅲ)求三棱锥M-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)如图,已知三棱锥P-ABC中,PA⊥面ABC,其中正视图为Rt△PAC,AC=2
6
,PA=4,俯视图也为直角三角形,另一直角边长为2
2

(Ⅰ)画出侧视图并求侧视图的面积;
(Ⅱ)证明面PAC⊥面PAB;
(Ⅲ)求直线PC与底面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)已知三棱锥P-ABC的棱长都是2,点D是棱AP上不同于P的点.
(1)试用反证法证明直线BD与直线CP是异面直线.
(2)求三棱锥P-ABC的体积VP-ABC

查看答案和解析>>

同步练习册答案