精英家教网 > 高中数学 > 题目详情
1.(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式;
(2)已知函数f(x)满足f(x)-2f(x)=x2-3x,求f(x)的解析式.

分析 (1)f(x)为一次函数,从而可设f(x)=ax+b,从而可以求出f(x+1),f(x-1),从而可以得到ax+5a+b=2x+17,这便可得到$\left\{\begin{array}{l}{a=2}\\{5a+b=17}\end{array}\right.$,求出a,b便可得出f(x);
(2)根据条件便可得到-f(x)=x2-3x,从而可求出f(x).

解答 解:(1)设f(x)=ax+b,a≠0,则:
3f(x+1)-2f(x-1)=3[a(x+1)+b]-2[a(x-1)+b]=ax+5a+b=2x+17;
∴$\left\{\begin{array}{l}{a=2}\\{5a+b=17}\end{array}\right.$;
∴$\left\{\begin{array}{l}{a=2}\\{b=7}\end{array}\right.$;
∴f(x)=2x+7;
(2)f(x)-2f(x)=-f(x)=x2-3x;
∴f(x)=-x2+3x.

点评 考查函数解析式的概念及求法,一次函数的一般形式,以及待定系数法求函数解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求直线l1:2x+y-4=0关于直线l:x-y+2=0对称的直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.求函数y=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )
A.232B.233C.234D.235

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在区间[-3,3]上随机取一个实数a,能使函数f(x)=x2+2x+a-1在R上有零点的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.方程$\left\{\begin{array}{l}x+y=3\\ 2x-3y=1\end{array}\right.$解集为{(2,1)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{1}{1-i}$+i,则复数z的模|z|=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{10}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}前n项和为Sn,且Sn+an=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=a1,bn=$\frac{3{b}_{n-1}}{{b}_{n-1}+3}$,n≥2 求证{$\frac{1}{{b}_{n}}$}为等差数列,并求数列{bn}的通项公式;
(Ⅲ)设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将十进制数转化为六进制数56=(132)6

查看答案和解析>>

同步练习册答案