精英家教网 > 高中数学 > 题目详情
19.已知平面向量$\overrightarrow{m}$=(1,$\sqrt{3}$),$\overrightarrow{n}$=(a,3)(a∈R),$\overrightarrow{p}$=($\sqrt{3}$,1),且$\overrightarrow{n}$⊥$\overrightarrow{p}$,则$\overrightarrow{m}$与$\overrightarrow{n}$的夹角是(  )
A.30°B.60°C.120°D.150°

分析 由题意 $\overrightarrow{n}•\overrightarrow{p}$=$\sqrt{3}$a+$\sqrt{3}$=0,求得a=-$\sqrt{3}$.设$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为θ,则由cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{2}$,求得θ的值.

解答 解:向量$\overrightarrow{m}$=(1,$\sqrt{3}$),$\overrightarrow{n}$=(a,3)(a∈R),$\overrightarrow{p}$=($\sqrt{3}$,1),且$\overrightarrow{n}$⊥$\overrightarrow{p}$,
∴$\overrightarrow{n}•\overrightarrow{p}$=$\sqrt{3}$a+$\sqrt{3}$=0,求得a=-$\sqrt{3}$.
设$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为θ,则由cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{-\sqrt{3}+3\sqrt{3}}{2•2\sqrt{3}}$=$\frac{1}{2}$,
∴θ=60°.

点评 本题主要考查两个向量垂直的性质,用数量积表示两个向量的夹角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.解下列不等式:
(1)-x2+x+6≤0
(2)x2-2x-5<2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数y=sin(x-$\frac{π}{3}$)的图象上所有点的横坐标伸长到原来的3倍(纵坐标不变),再将所得的图象向左平移$\frac{π}{2}$个单位,得到的图象对应的解析式是(  )
A.y=sin($\frac{1}{3}$x+$\frac{π}{6}$)B.y=sin(3x+$\frac{π}{6}$)C.y=sin($\frac{1}{3}$x-$\frac{π}{6}$)D.y=sin(3x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{-lo{g}_{3}x,x>1}\end{array}\right.$,g(x)=|x-k|+|x-1|,若对任意的x1,x2∈R,都有f(x1)≤g(x2)成立,则实数k的取值范围为(  )
A.(-$∞,\frac{3}{4}$)∪($\frac{5}{4},+∞$)B.(-$∞,\frac{3}{4}$]∪[$\frac{5}{4},+∞$)C.[$\frac{3}{4},\frac{5}{4}$]D.($\frac{3}{4},\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=lnx-$\sqrt{x}$+1的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合M={x|2x2-x-6<0},N={x|0<x≤4},则M∩N等于(  )
A.(0,2)B.(-$\frac{3}{2}$,0)C.(-2,3)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的主视图和左视图是两个边长为2的等边三角形,俯视图是直径为2的圆及其圆心,则该几何体的侧面积为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知-4<x<1,求y=$\frac{{x}^{2}-2x+2}{2(x-1)}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.化简下列各式:
(1)$\sqrt{5-2\sqrt{6}}$+$\sqrt{7-4\sqrt{3}}$;
(2)$\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}$(a≥1)

查看答案和解析>>

同步练习册答案