精英家教网 > 高中数学 > 题目详情
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=
4
3
,|PF2|=
14
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过点M(-2,1),交椭圆C于A,B两点,且M恰是A,B中点,求直线l的方程.
分析:(Ⅰ)根据椭圆的定义,可得a的值,在Rt△PF1F2中,|F1F2|=
|PF2|2-|PF1|2
=2
5
,可得椭圆的半焦距c=
5
,从而可求椭圆C的方程为
x2
9
+
y2
4
=1;
(Ⅱ)设A,B的坐标分别为(x1,y1)、(x2,y2),设过点(-2,1)的直线l的方程为 y=k(x+2)+1,代入椭圆C的方程,利用A,B关于点M对称,结合韦达定理,即可求得结论.
解答:解:(Ⅰ)因为点P在椭圆C上,所以2a=|PF1|+|PF2|=6,a=3.
在Rt△PF1F2中,|F1F2|=
|PF2|2-|PF1|2
=2
5
,故椭圆的半焦距c=
5
,从而b2=a2-c2=4,
所以椭圆C的方程为
x2
9
+
y2
4
=1.(6分)
(Ⅱ)设A,B的坐标分别为(x1,y1)、(x2,y2).若直线l斜率不存在,显然不合题意.
从而可设过点(-2,1)的直线l的方程为 y=k(x+2)+1,
代入椭圆C的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.
因为A,B关于点M对称,所以
x1+x2
2
=-
18k2+9k
4+9k2
=-2
,解得k=
8
9

所以直线l的方程为y=
8
9
(x+2)+1
,即8x-9y+25=0.
经检验,△>0,所以所求直线方程符合题意.                   (14分)
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程,联立方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一条斜率为1的直线l与离心率e=
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)交于P、Q两点,直线l与y轴交于点R,且
.
OP
.
OQ
=-3,
.
PR
=3
.
RQ
,求直线l和椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右顶点分别是A1,A2,上、下顶点为B2,B1,点P(
3
5
a
,m)(m>0)是椭圆C上一点,PO⊥A2B2,直线PO分别交A1B1、A2B2于点M、N.
(1)求椭圆离心率;
(2)若MN=
4
21
7
,求椭圆C的方程;
(3)在(2)的条件下,设R点是椭圆C上位于第一象限内的点,F1、F2是椭圆C的左、右焦点,RQ平分∠F1RF2且与y轴交于点Q,求点Q纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1的离心率为
3
2
,过椭圆C上一点P(2,1)作倾斜角互补的两条直线,分别与椭圆交于点A、B,直线AB与x轴交于点M,与y轴负半轴交于点N.
(Ⅰ)求椭圆C的方程:
(Ⅱ)若S△PMN=
3
2
,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左焦点为F1(-1,0),右焦点为F2(1,0),短轴两个端点为A、B.与x轴不垂直的直线l与椭圆C交于不同的两点M、N,记直线AM、AN的斜率分别为k1、k2,且k1k2=
3
2

(1)求椭圆C的方程;
(2)求证直线l与y轴相交于定点,并求出定点坐标.
(3)当弦MN的中点P落在△MF1F2内(包括边界)时,求直线l的斜率的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=
1
2

(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

同步练习册答案