精英家教网 > 高中数学 > 题目详情

【题目】

袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.

(Ⅰ)若两个球颜色不同,求不同取法的种数;

(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.

【答案】(1)96(2)见解析

【解析】试题分析:(1)利用组合知识及分步计数乘法原理可得结果;(2)随机变量所有可能的值为0,1,2,3.分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果.

试题解析:(1)两个球颜色不同的情况共有C42=96(种).

(2)随机变量X所有可能的值为0,1,2,3.

P(X=0)=

P(X=1)=

P(X=2)=

P(X=3)=

所以随机变量X的概率分布列为:

X

0

1

2

3

P

所以E(X)=0+1+2+3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若x≥0,y≥0,且x+2y=1,则2x+3y2的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)=ax2+2x+a2﹣3在区间[2,4]上具有单调性,则实数a取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=ln 为奇函数,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的函数F(x)的图象,由指数函数f(x)=ax与幂函数g(x)=xb“拼接”而成.

(1)求F(x)的解析式;
(2)比较ab与ba的大小;
(3)已知(m+4)b<(3﹣2m)b , 求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在平面直角坐标系xOy中,椭圆C (ab>0)的离心率为且过点(1,).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线lxm(ma)于点M.已知点B(1,0),直线PBl于点N

(Ⅰ)求椭圆C的方程;

(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则下列关于函数f(x)的说法正确的是(
A.为奇函数且在R上为增函数
B.为偶函数且在R上为增函数
C.为奇函数且在R上为减函数
D.为偶函数且在R上为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=
(1)写出直线l的极坐标方程与曲线C的普通方程;
(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:
①定义在R上的函数f(x)满足f(﹣2)=f(2),则f(x)不是奇函数
②定义在R上的函数f(x)恒满足f(﹣x)=|f(x)|,则f(x)一定是偶函数
③一个函数的解析式为y=x2 , 它的值域为{0,1,4},这样的不同函数共有9个
④设函数f(x)=lnx,则对于定义域中的任意x1 , x2(x1≠x2),恒有
其中为真命题的序号有(填上所有真命题的序号).

查看答案和解析>>

同步练习册答案