精英家教网 > 高中数学 > 题目详情
10.已知x,y满足$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y≤1}\end{array}\right.$,z=2x+y的最大值为m,若正数a,b满足a+b=m,则$\frac{1}{a}+\frac{4}{b}$的最小值为(  )
A.9B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{5}{2}$

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值m,然后根据基本不等式的性质进行求解即可.

解答 解:作出不等式组对应的平面区域如图:(阴影部分)
由z=2x+y得y=-2x+z,平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A(3,0)时,直线y=-2x+z的截距最大,此时z最大.
代入目标函数z=2x+y得z=2×3=6.
即m=6.
则a+b=6,
∴$\frac{1}{a}+\frac{4}{b}$=$\frac{1}{6}$($\frac{1}{a}+\frac{4}{b}$)(a+b)=$\frac{1}{6}$(1+4+$\frac{b}{a}$+$\frac{4a}{b}$)≥$\frac{1}{6}$(5+2$\sqrt{\frac{b}{a}•\frac{4a}{b}}$)=$\frac{3}{2}$,当且仅当a=2,b=4取等号,
故选:B

点评 本题主要考查线性规划以及基本不等式的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在平行四边形ABCD中,AB=4$\sqrt{2}$,BC=2,点P在CD上,且$\overrightarrow{CP}$=3$\overrightarrow{PD}$,∠BAD=$\frac{π}{4}$,则$\overrightarrow{AP}$•$\overrightarrow{PB}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$右焦点到渐近线的距离为(  )
A.3B.4C.5D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题正确的是(  )
A.命题“$?{x_0}∈R,{x_0}^2+1>3{x_0}$”的否定是“$?{x_0}∈R,{x^2}+1>3x$”
B.“函数f(x)=cosax-sinax的最小正周期为 π”是“a=2”的必要不充分条件
C.x2+2x≥ax在x∈[1,2]时有解?(x2+2x)min≥(ax)min在x∈[1,2]时成立
D.“平面向量$\overrightarrow a$与$\overrightarrow b$的夹角是钝角”的充分必要条件是“$\overrightarrow a$•$\overrightarrow b$<0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD的底面ABCD是正方形,分E,F,G别为PD,AB,CD的中点,PD⊥平面ABCD
(1)证明AC⊥PB
(2)证明:平面PBC∥平面EFG.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.按如图所示的程序框图,在运行后输出的结果为(  )
A.55B.56C.65D.66

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知幂函数f(x)=(m-1)2x${\;}^{{m}^{2}-3m+2}$在(0,+∞)上单调递增,函数g(x)=2x+k,当x∈(1,2]时,记f(x)和g(x)的值域分别为A和B,若B⊆A∩B,则实数k的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定义在R上的函数f(x),其周期为4,且当x∈[-1,3]时,f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}}&{x∈[-1,1]}\\{1-|x-2|}&{x∈(1,3]}\end{array}\right.$,
(1)画出函数在x∈[-1,3]的简图
(2)若函数g(x)=f(x)-kx-k恰有4个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知{an}是公差不为0的等差数列,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求证:数列{bn}的前n项和Sn<1.

查看答案和解析>>

同步练习册答案