精英家教网 > 高中数学 > 题目详情
9.如图,点A在⊙O上,过点O的割线PBC交⊙O于点B,C,且PA=4,PB=2,OB=3,∠APC的平分线分别交AB,AC于D,E.
(1)证明:∠ADE=∠AED;
(2)证明:AD•AE=BD•CE.

分析 (1)由弦切角定理得∠BAP=∠C,从而∠BAP+∠APD=∠C+∠CPE,由此能证明∠ADE=∠AED.
(2)利用角平分线的性质得到比值相等,即可证明结论.

解答 证明:(1)连接OA,
∵AP2+OA2=16+9=25=(OB+BP)2
∴OA⊥AP,
∴PA为⊙O的切线,
∴∠PAB=∠C,
∵∠AEP=∠C+∠BPE,∠ADE=∠PAB+∠APE,
∵PE平分∠APC,
∴∠BPE=∠APE
∴∠ADE=∠AED;
(2)∵PE是∠APC的平分线,
∴$\frac{AD}{DB}$=$\frac{AP}{PB}$=$\frac{4}{2}$,$\frac{EC}{EA}=\frac{PC}{PA}$=$\frac{4}{2}$,
∴$\frac{AD}{DB}$=$\frac{EC}{EA}$,
∴AD•AE=BD•CE.

点评 本题考查两角相等的证明,考查角平分线的性质的运用,是中档题,解题时要认真审题,注意弦切角定理、角平分线的性质、圆的性质等知识点的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.${∫}_{0}^{\frac{π}{2}}$(3x-sinx)dx的值为(  )
A.$\frac{{π}^{2}}{4}$+1B.$\frac{{π}^{2}}{4}$-1C.$\frac{3{π}^{2}}{8}$-1D.$\frac{3{π}^{2}}{8}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,测量河对岸的旗杆AB高时,选与旗杆底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=a,并在点C测得旗杆顶A的仰角为60°,则旗杆高AB为(  )
A.$\frac{{\sqrt{2}}}{2}a$B.$\frac{{3\sqrt{2}}}{2}a$C.$\frac{{\sqrt{3}}}{2}a$D.$\frac{{\sqrt{6}}}{2}a$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.从1,2,3,4,9,18六个数中任取两个不同的数分别作为一个对数的底数和真数,得到不同的对数值有(  )
A.21B.20C.19D.17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,PA是圆O的切线,切点为A,PO交圆O于B、C两点,$PA=\sqrt{3},PB=1$,则AC=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1
(Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)点P是线段EF上运动,设平面PAB与平面ADE成锐角二面角为θ,试求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.
(1)求证:FB=FC;
(2)若AB是△ABC外接圆的直径,∠EAC=120°,BC=9,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,异面直线AB,CD互相垂直,AB=$\sqrt{6}$,BC=$\sqrt{3}$,CD=1,BD=2,AC=3,截面EFGH分别与BD,AD,AC,BC相交于点E,F,G,H,且AB∥平面EFGH,CD∥平面EFGH.
(1)求证:BC⊥平面EFGH;
(2)求二面角B-AD-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱柱ABC-A1B1C1中,已知∠BAC=90°,AB=AC=1,BB1=2,∠ABB1=60°.
(1)证明:AB⊥B1C;
(2)若B1C=2,求二面角B1-CC1-A的余弦值.

查看答案和解析>>

同步练习册答案