设正项数列{an}的前n项和是Sn,若{an}和{}都是等差数列,且公差相等.
(1)求{an}的通项公式;
(2)若a1,a2,a5恰为等比数列{bn}的前三项,记数列cn=,数列{cn}的前n项和为Tn,求Tn.
科目:高中数学 来源: 题型:解答题
在数列中,且对任意的成等比数列,其公比为,
(1)若;
(2)若对任意的成等差数列,其公差为.
①求证:成等差数列,并指出其公差;
②若,试求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是a和an的等差中项.
(1)证明数列{an}为等差数列,并求数列{an}的通项公式;
(2)证明<2.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知{an}是首项为-2的等比数列,Sn是其前n项和,且S3,S2,S4成等差数列,
(1)求数列{an}的通项公式.
(2)若bn=log2|an|,求数列{}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}的前n项和Sn满足Sn+an+ n-1=2(n∈N*),设cn=2nan.
(1)求证:数列{cn}是等差数列,并求数列{an}的通项公式.
(2)按以下规律构造数列{bn},具体方法如下:
b1=c1,b2=c2+c3,b3=c4+c5+c6+c7,…,第n项bn由相应的{cn}中2n-1项的和组成,求数列{bn}的通项bn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知等差数列{an}是递增数列,且满足a4·a7=15,a3+a8=8.
(1)求数列{an}的通项公式;
(2)令bn=(n≥2),b1=,求数列{bn}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com