精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆:,过椭圆右焦点的最短弦长是,且点在椭圆上.

1)求该椭圆的标准方程;

2)设动点满足:,其中,是椭圆上的点,直线与直线的斜率之积为,求点的轨迹方程并判断是否存在两个定点,使得为定值?若存在,求出定值;若不存在,说明理由.

【答案】(1)(2)答案见解析

【解析】

(1)因为椭圆:,过椭圆右焦点的最短弦长是,可得.点在椭圆上,可得,即可求得答案;

(2)设,,,则由得:,即,.,在椭圆上,结合已知,即可求得答案.

1椭圆,过椭圆右焦点的最短弦长是

,

在椭圆上

由①②解得: ,

化简可得:

解得,,,

椭圆的标准方程为.

2)设,,,则由

得:,

,.

,在椭圆上,

,,

,

,分别为直线,的斜率,

由题设条件知:,可得,

,

点是椭圆上的点,设该椭圆的左、右焦点为点,,

使得为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列的前项和,对任意,都有为常数).

1)当时,求

2)当时,

)求证:数列是等差数列;

)若数列为递增数列且,设,试问是否存在正整数(其中),使成等比数列?若存在,求出所有满足条件的数组;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,椭圆上的点到左焦点的最小值为.

(1)求椭圆的方程;

(2)已知直线轴交于点,过点的直线交于两点,点为直线上任意一点,设直线与直线交于点,记的斜率分别为,则是否存在实数,使得恒成立?若是,请求出的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动.在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论.若根据欧拉得出的结论,估计10000以内的素数的个数为(素数即质数,,计算结果取整数)

A. 1089 B. 1086 C. 434 D. 145

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).

1)求这60天每天包裹数量的平均值和中位数;

2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?

3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,平面平面.

(1)求证:平面

(2)求平面与平面夹角的余弦值,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:,其中.

(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.

(2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价元,售价元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区天的销售量如下表:

(视样本频率为概率)

(1)根据该产品天的销售量统计表,记两天中一共销售该食品份数为,求的分布列与期望

(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进份,哪一种得到的利润更大?

查看答案和解析>>

同步练习册答案