精英家教网 > 高中数学 > 题目详情

给定圆(x-2)2+(y+8)2=(-3)2,下列说法正确的是


  1. A.
    圆心是(2,-8),半径为-3
  2. B.
    圆心是(-2,8),半径为3
  3. C.
    圆心是(2,-8),半径为3
  4. D.
    圆心是(-2,8),半径为-3
C
由圆的标准方程知圆心为(2,-8),半径为3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).
    线段s与线段s1的关系 m、r的取值或表达式 
 s所在直线平行于s1所在直线  
 s所在直线平分线段s1  

查看答案和解析>>

科目:高中数学 来源:导学大课堂必修二数学苏教版 苏教版 题型:013

给定圆(x-2)2+(y+8)2=(-3)2,下列说法正确的是

[  ]

A.圆心是(2,-8),半径为-3

B.圆心是(-2,8),半径为3

C.圆心是(2,-8),半径为3

D.圆心是(-2,8),半径为-3

查看答案和解析>>

科目:高中数学 来源:上海高考真题 题型:解答题

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz(Rez,Imz),
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上。写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段)。

查看答案和解析>>

科目:高中数学 来源:2008年上海市春季高考数学试卷(解析版) 题型:解答题

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).

查看答案和解析>>

同步练习册答案