精英家教网 > 高中数学 > 题目详情

【题目】如图,已知矩形中,,为边的中点,将沿直线翻折成,若是线段的中点,则在翻折过程中,下列命题:

①线段的长是定值;

②存在某个位置,使;

③点的运动轨迹是一个圆;

④存在某个位置,使得

正确的个数是()

A. B. C. D.

【答案】B

【解析】

中点,连接,根据面面平行的判定定理可证得平面平面,由面面平行性质定理可知平面,排除④;利用余弦定理可证得为定值,则①正确;由圆的定义可知③正确;假设,由线面垂直判定定理可证得平面,由线面垂直性质知,与已知矛盾,则假设错误,可排除②.

中点,连接

分别为中点

平面平面 平面

四边形为平行四边形

平面平面 平面

平面 平面平面

平面 平面,则④错误

,即为定值,则①正确

的轨迹是以为圆心,为半径的圆,则③正确

平面 平面

平面 ,与矛盾,可知假设不成立,则②错误

综上所述:①③正确

本题正确选项:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆中心在原点,焦点在轴上, 分别为上、下焦点,椭圆的离心率为 为椭圆上一点且

(1)若的面积为,求椭圆的标准方程;

(2)若的延长线与椭圆另一交点为,以为直径的圆过点 为椭圆上动点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)R上的奇函数,当x0时,解析式为f(x).

(1)f(x)R上的解析式;

(2)用定义证明f(x)(0,+∞)上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非零数列满足.

1)求证:数列是等比数列;

2)若关于的不等式有解,求整数的最小值;

3)在数列中,是否存在首项、第项、第(),使得这三项依次构成等差数列?若存在,求出所有的;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(x2-3x)lnx

(1)求函数f(x)x=e处的切线方程

(2)对任意的x)都存在正实数a,使得方程f(x)=a至少有2个实根, a的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,g(x)=a

(1)当a=3时,解不等式(关于x的)f(x)g(x)+3.

(2)若f(x)g(x)-1 对于任意x都成立,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为

(Ⅰ)求椭圆C的方程;

(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当点P在椭圆上运动时,求证:以BD为直径的圆与直线PF恒相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y24x+30,过原点的直线l与圆C有公共点.

1)求直线l斜率k的取值范围;

2)已知O为坐标原点,点P为圆C上的任意一点,求线段OP的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数的一个极值点为,求的单调区间;

(2)若,且关于的不等式恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案