精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=|xa|,a<0.

(1)证明:f(x)+f≥2;

(2)若不等式f(x)+f(2x)<的解集非空,求a的取值范围.

【答案】(1)见解析(2)(-1,0)

【解析】试题分析:(1)运用绝对值不等式的性质和基本不等式,即可得证;

(2)通过对x的范围的分类讨论去掉绝对值符号,转化为一次不等式,求得(f(x)+f(2x))min即可.

试题解析:

(1)证明:函数f(x)=|xa|,a<0,

f(x)+f=|xa|+

=|xa|+

=|x|+≥2

=2(当且仅当|x|=1时取等号).

(2)f(x)+f(2x)=|xa|+|2xa|,a<0.

xa时,f(x)+f(2x)=axa-2x=2a-3x

f(x)+f(2x)≥-a

a<x<时,f(x)+f(2x)=xaa-2x=-x

则-<f(x)+f(2x)<-a

x时,f(x)+f(2x)=xa+2xa=3x-2a

f(x)+f(2x)≥-

f(x)的值域为,若不等式f(x)+f(2x)<的解集非空,则需>-

解得a>-1,又a<0,所以-1<a<0,

a的取值范围是(-1,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求上的最小值;

2)若关于的不等式只有两个整数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中装有除颜色外其他均相同的编号为a,b的两个黑球和编号为c,d,e的三个红球,从中任意摸出两个球.

1)求恰好摸出1个黑球和1个红球的概率:

2)求至少摸出1个黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+1+|3-x|,x≥-1.

(1)求不等式f(x)≤6的解集;

(2)若f(x)的最小值为n,正数ab满足2naba+2b,求2ab的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,离心率为,且椭圆四个顶点构成的菱形面积为

(1)求椭圆C的方程;

(2)若直线l :y=x+m与椭圆C交于M,N两点,以MN为底边作等腰三角形,顶点为P(3,-2),求m的值及△PMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某市111日至14日的空气质量指数趋势图空气质量指数(AQI)小于100表示空气质量优良空气质量指数大于200表示空气重度污染某人随机选择111日至1112日中的某一天到达该市并停留3天.

(1)求此人到达当日空气重度污染的概率;

(2)X是此人停留期间空气重度污染的天数X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 设函数

1)当时,求函数的单调区间;

2)当时,曲线有两条公切线,求实数的取值范围;

3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中),.它的最小正周期为,且的最大值为2

1)求的解析式;

2)写出函数的单调递减区间、对称轴和对称中心.

查看答案和解析>>

同步练习册答案