精英家教网 > 高中数学 > 题目详情

【题目】设甲、乙、丙3个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这3个协会中抽取6名运动员组队参加比赛.

(1)求应从这3个协会中分别抽取的运动员的人数.

(2)将抽取的6名运动员进行编号编号分别为A1A2A3A4A5A6.现从这6名运动员中随机抽取2人参加双打比赛.

①用所给编号列出所有可能的结果;

②设事件A为“编号为A5A62名运动员中至少有1人被抽到”求事件A发生的概率.

【答案】(1) 从甲、乙、丙三个协会中抽取的运动员人数分别为312;(2)①见解析;②

【解析】试题分析:(1)由题为分层抽样,可知每个个体被抽到的可能性相同.则可得概率为

2)(i)用所给编号列出所有可能的结果则为6个元素中取出2个的所有情况可列出;

ii)为古典概型,可结合上问中的结论,确定所包含的基本事件,代入古典概率公式可得。

试题解析:()分层抽样中,每个个体被抽到的可能性相同

乙乒乓球协会的某运动员被抽到的概率

)(i)从6名运动员中随机抽取2名的所有结果为:

A1A2),(A1A3),(A1A4),(A1A5),(A1A6),

A2A3),(A2A4),(A2A5),(A2A6),(A3A4),

A3A5),(A3A6),(A4A5),(A4A6)),(A5A6),共15种;

ii)设A为事件编号为A5A6的两名运动员中至少有1人被抽到

则事件A包含:(A1A5),(A1A6),(A2A5),(A2A6),

A3A5),(A3A6),(A4A5),(A4A6)),(A5A6)共9个基本事件,

事件A发生的概率P==

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分别根据下列条件,求对应双曲线的标准方程.

(1)右焦点为,离心率

(2)实轴长为4的等轴双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面为直角梯形, .点的中点.

)求证: 平面

)已知平面底面,且.在棱上是否存在点,使?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行右侧的程序框图,当输入的x的值为4时,输出的y的值2,则空白判断框中的条件可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项科研活动共进行了5次试验,其数据如下表所示:

特征量

第1次

第2次

第3次

第4次

第5次

555

559

551

563

552

601

605

597

599

598

(1)从5次特征量的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;

(2)求特征量关于的线性回归方程;并预测当特征量为570时特征量的值.

(附:回归直线的斜率和截距的最小二乘法估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若上存在极值点,求的取值范围;

(2)设 ,若存在最大值,记为,则当时, 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机生产企业为了解消费者对某款手机功能的认同情况,通过销售部随机抽取50名购买该款手机的消费者,并发出问卷调查(满分50分),该问卷只有30份给予回复,这30份的评分如下:

(Ⅰ)完成下面的茎叶图,并求16名男消费者评分的中位数与14名女消费者评分的平均值;

(Ⅱ)若大于40分为“满意”,否则为“不满意”,完成上面的列联表,并判断是否有的把握认为消费者对该款手机的“满意度”与性别有关.

参考公式: ,其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学课上,老师为了提高同学们的兴趣,先让同学们从1到3循环报数,结果最后一个同学报2;再让同学们从1到5循环报数,最后一个同学报3;又让同学们从1到7循报数,最后一个同学报4.请你设计一个算法,计算这个班至少有多少人,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)在如图所示的五面体中,面为直角梯形, ,平面平面是边长为2的正三角形.

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案