精英家教网 > 高中数学 > 题目详情
14.已知全集U=R,集合A={x|x>2或x<1},B={x|x-a≤0},若∁UB⊆A,则实数a的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

分析 利用不等式的解法即可化简集合A,B,再利用集合的运算即可.

解答 解:∵集合A={x|x>2或x<1},B={x|x-a≤0},
∴CUB=(a,+∞).
∵∁UB⊆A,
∴a≥2.
∴实数a的取值范围是[2,+∞).
故选D.

点评 本题考查了一元二次不等式的解法、集合的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图所示,ABCD-A1B1C1D1是棱长为6的正方体,E,F分别是棱AB,BC上的动点,且AE=BF.当A1,E,F,C1共面时,平面A1DE与平面C1DF所成锐二面角的余弦值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{5}$D.$\frac{2\sqrt{6}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若数x,y满足$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{2x+y-7≤0}\end{array}}\right.$,则z=x-2y的最小值是(  )
A.-3B.-4C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.多面体的三视图如图所示,则该多面体的表面积为$\frac{32}{3}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.化简:
(1)sin($\frac{π}{6}$-2π)cos($\frac{π}{4}$+π)
(2)sin($\frac{π}{4}$+$\frac{5π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数f(x)对任意实数x,y均有f(x)•f(y)=f(x+y),且对于任意的x都有f(x)>0,且当x<0时f(x)>1.
(1)求证:f(x)为R上的减函数;
(2)当f(4)=$\frac{1}{16}$时,若f(x2-3x+2)≤$\frac{1}{4}$,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC中,AB=6,AC=8,∠BAC=90°,△ABC所在平面α外一点P到点A、B、C的距离都是13,则P到平面α的距离为(  )
A.7B.9C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为(  )
A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a=(4,-2)$,$\overrightarrow b=(x,1)$,若$\overrightarrow a∥\overrightarrow b$,则$|\overrightarrow a+\overrightarrow b|$=$\sqrt{5}$.

查看答案和解析>>

同步练习册答案