精英家教网 > 高中数学 > 题目详情
如果实数x,y满足
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,则z=|x+2y+4|的最大值
29
29
分析:先确定平面区域,再求
|x+2y+4|
5
的最大值,从而可求z=|x+2y+4|的最大值.
解答:解:不等式表示的平面区域为

其中C的坐标由
x-y+2=0
2x-y-5=0
,可得
x=7
y=9
,即C(7,9)
先求
|x+2y+4|
5
的最大值
由图可知,C到直线x+2y+4=0的距离为
|7+18+4|
5
=
29
5

∴z=|x+2y+4|的最大值为29
故答案为:29
点评:本小题主要考查线性规划问题,以及简单的转化思想和数形结合的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果实数x,y满足
x+2y≤1
x≥0
y≥0
,则
4x+2y-16
x-3
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x、y满足(x-2)2+y2=3,则
y
x
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)如果实数x、y满足
x-4y+3≤0
3x+5y-25≤0
x≥1
,目标函数z=kx+y的最大值为12,最小值3,那么实数k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)如果实数x、y满足
x-4y+3≤0
3x+5y-25≤0
x≥1
,目标函数z=kx+y的最大值为12,最小值3,那么实数k的值为
2
2

查看答案和解析>>

同步练习册答案