精英家教网 > 高中数学 > 题目详情

【题目】△ABC中,BC边上的高所在直线的方程为x+2y+3=0∠A的平分线所在直线的方程为y=0,若点B的坐标为(﹣1﹣2),分别求点A和点C的坐标.

【答案】A的坐标为(﹣30).C36).

【解析】

试题利用角平分线的性质、相互垂直的直线斜率之间的关系即可得出.

解:由,解得x=3y=0

所以点A的坐标为(﹣30).

直线AB的斜率kAB==1

∠A的平分线所在的直线为x轴,

所以直线AC的斜率kAC=kAB=1

因此,直线AC的方程为y0=[x﹣(﹣3],即y=x+3①

因为BC边上的高所在直线的方程为x+2y+3=0,所以其斜率为﹣

所以直线BC的斜率kAC=2

所以直线BC的方程为y+2=2x+1),即y=2x ②

联立①②,解得x=3y=6,所以C36).

   

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的定义域;

(2)时,解关于x的不等式:

(3)时,不等式对任意实数恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在研究函数fx)=xR时,分别给出下面几个结论:

①等式f(-x)=-fx)在xR时恒成立;

②函数fx)的值域为(-1,1);

③若x1x2,则一定有fx1)≠fx2);

④方程fx)=xR上有三个根.

其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为上的奇函数,且.

(1)用定义证明:函数上是增函数;

(2)若实数t满足求实数t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆上一动点,过点轴,垂足为点,中点为

1)当在圆上运动时,求点的轨迹的方程

Ⅱ)过点的直线交于两点,当时,求线段的垂直平分线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题为真命题的是(

A.为真命题,则为真命题;

B.”是“”的充分不必要条件;

C.命题“若,则”的否命题为“若,则”;

D.已知命题,使得,则,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=奇函数,且

1)求实数p ,q的值.

2)判断函数fx)在上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,定直线 ,动圆过点,且与直线相切.

(Ⅰ)求动圆的圆心轨迹的方程;

(Ⅱ)过点的直线与曲线相交于 两点,分别过点 作曲线的切线 ,两条切线相交于点,求外接圆面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程: 为参数),曲线的参数方程: 为参数),且直线交曲线两点.

(1)将曲线的参数方程化为普通方程,并求时, 的长度;

(2)巳知点,求当直线倾斜角变化时, 的范围.

查看答案和解析>>

同步练习册答案