A. | $\frac{8}{3}$ | B. | $\frac{11}{6}$ | C. | $\frac{11}{3}$ | D. | $\frac{5}{3}$ |
分析 求出函数的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a,再求f(x)在区间(1,3)上的最小值.
解答 解:f′(x)=3ax2-3x+2,
由图象在(1,f(1))处的切线平行于x轴,
可得f′(1)=3a-3+2=0,
解得a=$\frac{1}{3}$,
∴f′(x)=(x-1)(x-2),
函数在(1,2)上单调递减,(2,3)上单调递增,
∴x=2时,f(x)在区间(1,3)上的最小值是$\frac{5}{3}$.
故选D.
点评 本题考查导数的运用:求切线的斜率,函数的单调性与最值,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | x=10% | B. | x<10% | ||
C. | x>10% | D. | x的大小由第一年的产量决定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $80+16\sqrt{2}$ | B. | $96+13\sqrt{2}$ | C. | 96 | D. | 112 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1<a<2 | B. | 1≤a<3 | C. | a>0 | D. | 1<a<3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {-1} | B. | {1} | C. | {-1,1} | D. | {-1,0,1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com