精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x
x+1
,f-1(x)为f(x)的反函数
(1)求f-1(x);
(2)设k<2,解关于x的不等式x•f-1(x)<
(k+1)x-k
2-x
分析:(1)根据y=
2x
x+1
,变形后得到y不等于2,然后利用含有y的代数式表示出x,把x换为y,y换为x后,得到f(x)的反函数f-1(x);
(2)把(1)中求出的f(x)的反函数代入x•f-1(x)<
(k+1)x-k
2-x
中,化简后得到x-k,x-1及x-2三者乘积大于0,然后分k小于1,k=1及k大于1小于2三种情况,利用不等式取解集的方法即可得到原不等式的解集.
解答:解:(1)由y=
2x
x+1
=
2(x+1)-2
x+1
=2-
2
x+1
≠2
,(2分)
y(x+1)=2x?(2-y)x=y?x=
y
2-y
,(4分)
f-1(x)=
x
2-x
,(x≠2)
;(5分)
(2)由(1)知不等式x•f-1(x)<
(k+1)x-k
2-x

?
x2-(k+1)x+k
2-x
<0
?
(x-k)(x-1)
2-x
<0

?(x-k)(x-1)(x-2)>0.(*)(7分)
①当k<1时,(*)?k<x<1或x>2(8分)
②当k=1时,(*)?(x-1)2(x-2)>0?x>2(9分)
③当1<k<2时,(*)?1<x<k或x>2(10分)
综上:当k<1时,不等式解集为{x|k<x<1或x>2};
当k=1时,不等式解集为{x|x>2};
当1<k<2时,不等式解集为{x|1<x<k或x>2}.(12分)
点评:此题考查学生会根据函数的解析式求出函数的反函数,考查了转化和分类讨论的数学思想,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案