精英家教网 > 高中数学 > 题目详情
2.已知函数y=f(x)是一次函数,且[f(x)]2-3f(x)=4x2-10x+4,则f(x)=-2x+4或2x-1.

分析 根据题意可设f(x)=ax+b(a≠0),所以a2x2+(2ab-3a)x+b2-3b=4x2-10x+4,可得a与b的数值,进而得到答案.

解答 解:∵函数y=f(x)是一次函数,
∴设f(x)=ax+b(a≠0),
∵[f(x)]2-3f(x)=4x2-10x+4,
∴(ax+b)2-3(ax+b)=4x2-10x+4,
∴a2x2+(2ab-3a)x+b2-3b=4x2-10x+4,
∴$\left\{\begin{array}{l}{{a}^{2}=4}\\{2ab-3a=-10}\\{{b}^{2}-3b=4}\end{array}\right.$,∴a=-2,b=4或a=2,b=-1,
∴f(x)=-2x+4或f(x)=2x-1.
故答案为-2x+4或2x-1.

点评 本题主要考查求解析式的方法以及一次函数的特征.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,(n∈N*).
(1)求f(x)的解析式;
(2)设数列{an}满足an=f′(-n)•2n,求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆$\frac{x^2}{4}+\frac{y^2}{b^2}=1(0<b<2)$,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为6,则b的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=lg(-x+4)的定义域为(  )
A.(-∞,4]B.(-∞,4)C.(0,4)D.(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义在R上的偶函数,并满足f(x+2)=-$\frac{1}{f(x)}$,当1≤x<2时,$f(x)={log_{\frac{1}{2}}}({2-x})$,则f(6.5)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若关于x的不等式${4^x}-{log_a}x≤\frac{3}{2}$在$x∈(0,\frac{1}{2}]$上恒成立,则实数a的取值范围是(  )
A.$[\frac{1}{4},1)$B.$(0,\frac{1}{4}]$C.$[\frac{3}{4},1)$D.$(0,\frac{3}{4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数 y=a x-4+b (a>0,且 a≠1 )的图象恒过定点( 4,6 ),则b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知全集U=R,集合A={x|0<2x+4<10},B={x|x<-4,或x>2},C={x|(x-a)(x-3a)<0,a<0}
(1)求A∪B
(2)若∁U(A∪B)⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知n=9$\int_{-1}^1{x^2}$dx,在二项式${(x-\frac{2}{x})^n}$的展开式中,x2的系数是60.

查看答案和解析>>

同步练习册答案