已知抛物线的焦点为椭圆的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:,直线与的斜率之积为,证明:存在定点使
得为定值,并求出的坐标;
(3)若在第一象限,且点关于原点对称,垂直于轴于点,连接 并延长交椭圆于点,记直线的斜率分别为,证明:.
(1);(2)存在使得;(3)证明过程详见试题解析.
解析试题分析:(1)由双曲线的焦点与椭圆的焦点重合求出椭圆中的,再由,求出所求椭圆方程为;(2)先设,由,结合椭圆的标准方程可以得到使得为定值;(3)要证明就是要考虑,详见解析.
试题解析:(1)由题设可知:因为抛物线的焦点为,
所以椭圆中的又由椭圆的长轴为4得
故
故椭圆的标准方程为:
(2)设,
由可得:
由直线OM与ON的斜率之积为可得:
,即
由①②可得:
M、N是椭圆上的点,故
故,即
由椭圆定义可知存在两个定点,
使得动点P到两定点距离和为定值;
(3)设,由题设可知 ,
由题设可知斜率存在且满足.
将③代入④可得:⑤
点在椭圆,
故
考点:直线与圆锥曲线.
科目:高中数学 来源: 题型:解答题
已知椭圆E:=1(a>b>0)的右焦点为F,过原点和x轴不重合的直线与椭圆E相交于A,B两点,且|AF|+|BF|=2,|AB|的最小值为2.
(1)求椭圆E的方程;
(2)若圆x2+y2=的切线L与椭圆E相交于P,Q两点,当P,Q两点横坐标不相等时,OP(O为坐标原点)与OQ是否垂直?若垂直,请给出证明;若不垂直,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:=1(a>b>0),F1(-c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,点F2(c,0)到直线l:x=的距离为3.
(1)求椭圆E的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点A,B,且⊥,求出该圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点A在椭圆C上,·=0,3||·||=-5·,||=2,过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)线段OF2(O为坐标原点)上是否存在点M(m,0),使得·=·?若存在,求出实数m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点P与平面上两定点连线的斜率的积为定值.
(1)试求动点P的轨迹方程C.
(2)设直线与曲线C交于M、N两点,当|MN|=时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l1:4x-3y+6=0和直线l2:x=- (p>2).若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(1)求抛物线C的方程;
(2)若拋物线上任意一点M处的切线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为双曲线的一个焦点,且两条曲线都经过点.
(1)求这两条曲线的标准方程;
(2)已知点在抛物线上,且它与双曲线的左,右焦点构成的三角形的面积为4,求点 的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com