精英家教网 > 高中数学 > 题目详情
(2013•烟台二模)若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=2x-1-3,则不等式f(x)>1的解集为
(-2,0)∪(3,+∞)
(-2,0)∪(3,+∞)
分析:当x=0时根据奇函数的特性得f(x)=0,故原不等式不成立;当x>0时,原不等式化成2x-1-3>1,解之可得x>3;当x<0时,结合函数为奇函数将原不等式化为2--x-1-3<-1,解之可得-2<x<0.最后综合即可得到原不等式的解集.
解答:解:①当x=0时,f(x)=0,显然原不等式不能成立
②当x>0时,不等式f(x)>1即2x-1-3>1
化简得2x-1>4,解之得x>3;
③当x<0时,不等式f(x)>1可化成-f(-x)>1,即f(-x)<-1,
∵-x>0,可得f(-x)=2-x-1-3,
∴不等式f(-x)<-1化成2-x-1-3<-1,
得2-x-1<2,解之得-2<x<0
综上所述,可得原不等式的解集为(-2,0)∪(3,+∞)
点评:本题给出奇函数在大于0时的不等式,求不等式f(x)>1的解集.着重考查了函数的奇偶性、函数解析式的求法和指数不等式的解法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•烟台二模)在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12.q=
S2
b2

(Ⅰ)求an与bn
(Ⅱ)设数列{cn}满足cn=
1
Sn
,求的{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)已知二次函数f(x)=ax2+bx+c的导函数f′(x)满足:f′(0)>0,若对任意实数x,有f(x)≥0,则
f(1)
f′(0)
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)设p:f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥-5,则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)将函数f(x)=3sin(4x+
π
6
)图象上所有点的横坐标伸长到原来的2倍,再向右平移
π
6
个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)已知i为虚数单位,复数z=
1-2i
2-i
,则复数z的虚部是(  )

查看答案和解析>>

同步练习册答案