精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是正方形,PD=AB=2,E为PC中点.求二面角E﹣BD﹣P的余弦值.

【答案】解:以点D为坐标原点,分别以直线DA,DC,DP为x轴,y轴,z轴建立如图所示的空间直角坐标系, 则D(0,0,0),P(0,0,2),B(2,2,0),E(0,1,1),
=(2,2,0), =(0,1,1).
设平面BDE的法向量为 =(x,y,z),
,令z=1,得y=﹣1,x=1.∴平面BDE的一个法向量为 =(1,﹣1,1).
又∵C(0,2,0),A(2,0,0), =(﹣2,2,0),且AC⊥平面PDB,
∴平面PDB的一个法向量为 =(1,﹣1,0).
设二面角E﹣BD﹣P的平面角为α,
则cosα= = =
∴二面角E﹣BD﹣P的余弦值为

【解析】以点D为坐标原点,分别以直线DA,DC,DP为x轴,y轴,z轴建立如图所示的空间直角坐标系,由此能求出二面角E﹣BD﹣P的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABCD为空间四边形,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与(
A.AC,BD之一垂直
B.AC,BD都垂直
C.AC,BD都不垂直
D.AC,BD不一定垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)求平行于直线x﹣2y+1=0,且与它的距离为2 的直线方程; (Ⅱ)求经过两直线l1:x﹣2y+4=0和l2:x+y﹣2=0的交点P,且与直线l3:2x+3y+1=0垂直的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}中,a1=64,公比q≠1,a2 , a3 , a4又分别是某个等差数列的第7项,第3项,第1项.
(1)求an
(2)设bn=log2an , 求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率为 ,短轴长为4 . (Ⅰ)求椭圆C的标准方程;
(Ⅱ)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为
①求四边形APBQ面积的最大值;
②设直线PA的斜率为k1 , 直线PB的斜率为k2 , 判断k1+k2的值是否为常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且满足(2b﹣a)cosC=ccosA. (Ⅰ)求角C的大小;
(Ⅱ)设y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判断当y取得最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(2cosx,sinx﹣cosx), =( sinx,sinx+cosx),记函数f(x)= . (Ⅰ)求f(x)的表达式,以及f(x)取最大值时x的取值集合;
(Ⅱ)设△ABC三内角A,B,C的对应边分别为a,b,c,若a+b=2 ,c= ,f(C)=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在单调递增数列{an}中,a1=2,a2=4,且a2n1 , a2n , a2n+1成等差数列,a2n , a2n+1 , a2n+2成等比数列,n=1,2,3,…. (Ⅰ)(ⅰ)求证:数列 为等差数列;
(ⅱ)求数列{an}的通项公式.
(Ⅱ)设数列 的前n项和为Sn , 证明:Sn ,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,设向量 =(a,c), =(cosC,cosA).
(1)若 ,a= c,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.

查看答案和解析>>

同步练习册答案