精英家教网 > 高中数学 > 题目详情

已知数列{an}中a1=3,a2=7,当n≥1且n∈N*时,an+2等于anan+1的个位数,则该数列的第2010项等于________.

9
分析:根据题意可得:an+2等于anan+1的个位数,所以可得a4=7,a5=7,a6=9,a7=3,a8=7,a9=1,a10=7,进而得到数列的一个周期为6,即可得到答案.
解答:由题意得,a3=a1•a2=1,由题意可得:a4=7,
依此类推,a5=7,a6=9,a7=3,a8=7,a9=1,a10=7,
所以我们可以根据以上的规律看出数列的一个周期为6,
因为2010=6×335,
所以a2010=a6=9.
故答案为:9.
点评:本题主要借助于数列的性质考查有关的新定义,解决此类问题的关键是要注意正确审题,即正确理解数列递推式的定义,以及正确并且合理的运用数列的递推式和数列的周期性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=-10,且经过点A(an,an+1),B(2n,2n+2)两点的直线斜率为2,n∈N*
(1)求证数列{
an2n
}
是等差数列,并求数列{an}的通项公式;
(2)求数列{an}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=3n+4,若an=13,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1为由曲线y=
x
,直线y=x-2及y轴
所围成图形的面积的
3
32
Sn为该数列的前n项和,且Sn+1=an(1-an+1)+Sn
(1)求数列{an}的通项公式;
(2)若不等式an+an+1+an+2+…+a3n
a
24
对一切正整数n都成立,求正整数a的最大值,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=n2+(λ+1)n,(x∈N*),且an+1>an对任意x∈N*恒成立,则实数λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

查看答案和解析>>

同步练习册答案