精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别是角A、B、C所对的边,且b2=ac,向量m=(cos(A-C),1)和n=(1,cosB)满足m•n=
32

(1)求sinAsinC的值;
(2)求证:三角形ABC为等边三角形.
分析:(1)由m=(cos(A-C),1)和n=(1,cosB)满足m•n=
3
2
,我们不难得到cos(A-C)+cos(A+C)=
3
2
,和差化积后,即可得到sinAsinC的值;
(2)由(1)的结论及b2=ac,我们易得B角的大小,再由余弦定理,我们可以得到a,c两边的关系,进行判断三角形ABC为等边三角形.
解答:(1)解:由m•n=
3
2
得,
cos(A-C)+cosB=
3
2

又B=π-(A+C),得cos(A-C)-cos(A+C)=
3
2

即cosAcosC+sinAsinC-(cosAcosC-sinAsinC)=
3
2

所以sinAsinC=
3
4

(2)证明:由b2=ac及正弦定理得sin2B=sinAsinC,
sin2B=
3
4

于是cos2B=1-
3
4
=
1
4

所以cosB=
1
2
-
1
2

因为cosB=
3
2
-cos(A-C)>0,
所以cosB=
1
2
,故B=
π
3

由余弦定理得b2=a2+c2-2accosB,
即b2=a2+c2-ac,
又b2=ac,
所以ac=a2+c2-ac,
得a=c.
因为B=
π
3

所以三角形ABC为等边三角形.
点评:要想判断一个三角形的形状,我们有两种思路:一是判断最大角是锐角、直角还是钝角;二是判断是否有两边长相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案