精英家教网 > 高中数学 > 题目详情

已知函数在点处的切线方程为,且对任意的恒成立.

(Ⅰ)求函数的解析式;

(Ⅱ)求实数的最小值;

(Ⅲ)求证:).

 

【答案】

(Ⅰ) (Ⅱ) 

(Ⅲ)先证,累加即得.

【解析】

试题分析:(Ⅰ)将代入直线方程得,∴① 

,∴②  

联立,解得                                

(Ⅱ),∴上恒成立;

恒成立;         

∴只需证对于任意的                 

1)当,即时,,∴

单调递增,∴                 

2)当,即时,设是方程的两根且

,可知,分析题意可知当时对任意

,∴                              

综上分析,实数的最小值为.                             

(Ⅲ)令,有恒成立;

,得        

∴原不等式得证.  

考点:利用导数研究曲线上某点切线方程;函数解析式的求解及常用方法;不等式的证明.

点评:本题考查了利用导数研究函数的切线方程问题,在曲线上某点处的切线的斜率就是该点的导数值,考查了导数在最大值和最小值中的应用,体现了数学转化思想和分类讨论的数学思想.特别是(Ⅲ)的证明,用到了放缩法和裂项相消,此题属难度较大的题目.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届辽宁省五校协作体届高三摸底考试理科数学试卷(解析版) 题型:解答题

已知函数在点处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+)均有恒成立.

(Ⅰ)求a,b,c的值;

(Ⅱ)求证:.

 

查看答案和解析>>

科目:高中数学 来源:2014届云南省高二下学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数在点处的切线方程为

(1)求函数的解析式;

(2)若经过点可以作出曲线的三条切线,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省南昌市高二2月份月考文科数学试卷(解析版) 题型:解答题

(本小题13分)已知函数在点处的切线与直线垂直.

(1)若对于区间上任意两个自变量的值都有,求实数的最小值;

(2)若过点可作曲线的三条切线,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏南四校高三12月月考试数学试卷(解析版) 题型:解答题

已知函数在点处的切线方程为

(1)求函数的解析式;

(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c的最小值.

 

查看答案和解析>>

同步练习册答案