精英家教网 > 高中数学 > 题目详情
14.不等式|x-5|+|x+1|<8的解集为(  )
A.(-∞,2)B.(-2,6)C.(6,+∞)D.(-1,5)

分析 由条件利用绝对值的意义,求得绝对值不等式|x-5|+|x+1|<8的解集.

解答 解:由于|x-5|+|x+1|表示数轴上的x对应点到5、-1对应点的距离之和,
而数轴上的-2和6对应点到5、-1对应点的距离之和正好等于8,
故不等式|x-5|+|x+1|<8的解集为(-2,6),
故选:B.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,左顶点为B,左焦点为F,M是椭圆上一点,且FM⊥x轴,若|AB|=4|FM|,那么该椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知一个椭圆中心在原点,焦点在同一坐标轴上,焦距为$2\sqrt{13}$.一双曲线和这椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7:3,求椭圆和双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知全集U=R,非空集合A=$\{x|-2≤\frac{x-1}{3}-1≤2\}$,B={x|(x-1+m)(x-1-m)≤0}(m>0)
(Ⅰ)当m=1时,求(∁UB)∩A;
(Ⅱ)命题p:x∈A,命题q:x∈B,若q是p的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知幂函数y=f(x)的图象过点$({3,\sqrt{3}})$,则log2f(2)的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=x3-3(a+1)x+b.(a≠0)
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数g(x)=f(x)+3x的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设F1,F2是双曲线$\frac{x^2}{8}-{y^2}$=1的两个焦点,点P在双曲线上,且∠F1PF2=90°,则点P到x轴的距离为(  )
A.$\sqrt{7}$B.3C.$\frac{1}{3}$D.$\frac{{\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在空间四边形ABCD中,E,F分别是AB,AD的中点
(1)求证:EF∥平面BCD
(2)若AB=AD,BC=CD,求证:AC⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知具有线性相关的两个变量x,y之间的一组数据如表:
x01234
y2.24.3t4.86.7
且回归方程是$\widehat{y}$=0.95x+2.6,则t=(  )
A.4.7B.4.6C.4.5D.4.4

查看答案和解析>>

同步练习册答案