【题目】已知圆,过点作的异于轴的切线,过点作的异于轴的切线.设与交于点,记的轨迹为.
(1)求的方程;
(2)已知,在点处的切线交直线于点,过原点与平行的直线交于点.证明:以为直径的圆截轴的弦长为定值.
科目:高中数学 来源: 题型:
【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.
(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.
(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.
(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(m为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθρsinθ2=0.
(1)求C和l的直角坐标方程;
(2)设直线l与曲线C的公共点为P,Q,求|PQ|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】坐标系与参数方程:在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,直线的极坐标方程为,且点在直线上
(Ⅰ)求的值和直线的直角坐标方程及的参数方程;
(Ⅱ)已知曲线的参数方程为,(为参数),直线与交于两点,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱的所有棱长都为,是的中点,在边上,.
(1)证明:平面平面;
(2)若是侧面内的动点,且平面.
①在答题卡中作出点的轨迹,并说明轨迹的形状(不需要说明理由);
②求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是______.
①2至3月份的收入的变化率与11至12月份的收入的变化率相同;
②支出最高值与支出最低值的比是6:1;
③第三季度平均收入为50万元;
④利润最高的月份是2月份。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】渭南市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:渭南城区所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人.违反者将被处以元罚款,记分的行政处罚.下表是渭南市一主干路段,监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:
月份 | |||||
违章驾驶员人数 |
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路月份的不“礼让斑马线”违章驾驶员人数;
(3)若从表中、月份分别抽取人和人,然后再从中任选人进行交规调查,求拍到的两人恰好来自同一月份的概率.
参考公式:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com