【题目】已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1 , x2∈[0,3],且x1≠x2时,都有 .给出下列命题: ①f(3)=0;
②直线x=﹣6是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[﹣9,﹣6]上为增函数;
④函数y=f(x)在[﹣9,9]上有四个零点.
其中所有正确命题的序号为(把所有正确命题的序号都填上)
【答案】①②④
【解析】解:①:对于任意x∈R,都有f (x+6)=f (x)+f (3)成立,令x=﹣3,则f(﹣3+6)=f(﹣3)+f (3),又因为f(x)是R上的偶函数,所以f(3)=0. ②:由(1)知f (x+6)=f (x),所以f(x)的周期为6,
又因为f(x)是R上的偶函数,所以f(x+6)=f(﹣x),
而f(x)的周期为6,所以f(x+6)=f(﹣6+x),f(﹣x)=f(﹣x﹣6),
所以:f(﹣6﹣x)=f(﹣6+x),所以直线x=﹣6是函数y=f(x)的图象的一条对称轴.
③:当x1 , x2∈[0,3],且x1≠x2时,都有
所以函数y=f(x)在[0,3]上为增函数,
因为f(x)是R上的偶函数,所以函数y=f(x)在[﹣3,0]上为减函数
而f(x)的周期为6,所以函数y=f(x)在[﹣9,﹣6]上为减函数.
④:f(3)=0,f(x)的周期为6,
所以:f(﹣9)=f(﹣3)=f(3)=f(9)=0
函数y=f(x)在[﹣9,9]上有四个零点.
所以答案是:①②④.
【考点精析】本题主要考查了函数单调性的判断方法和函数的零点的相关知识点,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】函数f(x)= +lg(1+3x)的定义域是( )
A.(﹣∞,﹣ )?
B.(﹣ , )∪( ,+∞)?
C.( ,+∞)?
D.( , )∪( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,把方程f(x)=x的根按从小到大的顺序排列成一个数列,则该数列的通项公式为( )
A. (n∈N*)
B.an=n(n﹣1)(n∈N*)
C.an=n﹣1(n∈N*)
D.an=2n﹣2(n∈N*)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x2﹣3ax)对任意的x1 , x2∈[ ,+∞),x1≠x2时都满足 <0,则实数a的取值范围是( )
A.(0,1)
B.(0, ]
C.(0, )
D.( , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四个命题:
(1)CD⊥面GEF;
(2)AG=1;
(3)以AC,AE作为邻边的平行四边形面积是8;
(4)∠EAD=60°.
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 , ,其中a>0,且a≠1.
(1)若0<a<1,求满足不等式f(x)<1的x的取值的集合;
(2)求关于x的不等式f(x)≥g(x)的解的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1、F2为双曲线 ﹣ =1(a>0,b>0)的左、右焦点,过F2作双曲线渐近线的垂线,垂足为P,若|PF1|2﹣|PF2|2=c2 . 则双曲线离心率的值为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com