精英家教网 > 高中数学 > 题目详情
17.已知点P(2,1),Q(-2,-2),过点(0,5)的直线l与线段PQ有公共点,则直线l的斜率k的取值范围是k≤-2或k≥$\frac{7}{2}$.

分析 根据题意,画出图形,结合图形,求出直线AP、AQ的斜率,从而求出直线l的斜率k的取值范围.

解答 解:根据题意,画出图形,如图所示:

∵直线AP的斜率是kAP=$\frac{5-1}{0-2}$=-2,
直线BP的斜率是kQA=$\frac{5+2}{0+2}$=$\frac{7}{2}$,
∴直线l的斜率应满足k≤kAP或k≥kAQ
即k≤-2或k≥$\frac{7}{2}$时,直线l与线段PQ相交;
故答案为:k≤-2或k≥$\frac{7}{2}$.

点评 本题考查了直线方程的应用问题,也考查了数形结合的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.函数f(x)=x cos2x在区间[0,2π]上的零点的个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:
分组频数频率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30)20.05
合计M1
(1)求出表中M、p、m、n的值;
(2)补全频率分布直方图;若该校高一学生有360人,估计他们参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[20,25)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=2-x和函数$g(x)={log_{\frac{1}{2}}}$x,则函数f(x)与g(x)的图象关于(  )对称.
A.x轴B.y轴C.直线y=xD.原点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集I={0,1,2,3},集合A={1,2},B={2,3},则A∪(CIB)=(  )
A.{1}B.{2,3}C.{0,1,2}D.{0,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数a,b∈R+,若a+b=1,那么$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)为R上奇函数,且x>0时,f(x)=x2-2x,则f(-3)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列四个说法:
(1)y=x+1与y=$\sqrt{(x+1)^{2}}$是相同的函数;
(2)若函数f(x)的定义域为[-1,1],则f(x+1)的定义域为[0,2];
(3)函数f(x)在[0,+∞)时是增函数,在(-∞,0)时也是增函数,所以f(x)是(-∞,+∞)上的增函数;
(4)函数f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x+3}$在区间[3,+∞)上单调递减.
其中正确的说法是(4)(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知四棱锥P-ABCD的五个顶点都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=2,则球O的表面积等于(  )
A.16πB.20πC.24πD.36π

查看答案和解析>>

同步练习册答案