【题目】如图,在三棱柱中,平面,,,且,,分别为棱,,的中点.
(1)证明:直线与共面;并求其所成角的余弦值;
(2)在棱上是否存在点,使得平面,若存在,求的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】随着经济的发展,轿车已成为人们上班代步的一种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.
(1)求此人这三年以来每周开车从家到公司的时间之和在(时)内的频率;
(2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作代表);
(3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在(时)内的周数为,求的分布列以及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】党的十九大报告明确指出要坚决打赢脱贫攻坚战,让贫困人口和贫困地区同全国一道进入全面小康社会,要动员全党全国全社会力量,坚持精准扶贫、精准脱贫,确保到2020年我国现行标准下农村贫困人口实现脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作.经摸底排查,该村现有贫困农户100户,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元,扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其户数必须小于种植的户数.从2018年初开始,若该村抽出户(,)从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收入每户平均比上一年提高,而从事包装销售农户的年纯收入每户平均为万元.(参考数据:,,,).
(1)至2018年底,该村每户年均纯收入能否达到1.32万元?若能,请求出从事包装、销售的户数;若不能,请说明理由;
(2)至2020年底,为使从事水果种植农户能实现脱贫(即每户(水果种植农户)年均纯收入不低于1.6万元),至少要抽出多少户从事包装、销售工作?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中,为自然对数的底数. 设是的导函数.
(Ⅰ)若时,函数在处的切线经过点,求的值;
(Ⅱ)求函数在区间上的单调区间;
(Ⅲ)若,函数在区间内有零点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年3月18日,国务院办公厅发布了《生活垃圾分类制度实施方案》,我市环保部门组织了一次垃圾分类知识的网络问卷调查,每位市民都可以通过电脑网络或手机微信平台参与,但仅有一次参加机会工作人员通过随机抽样,得到参与网络问卷调查的100人的得分(满分按100分计)数据,统计结果如下表.
组别 | ||||||
女 | 2 | 4 | 4 | 15 | 21 | 9 |
男 | 1 | 4 | 10 | 10 | 12 | 8 |
(1)环保部门规定:问卷得分不低于70分的市民被称为“环保关注者”.请列出列联表,并判断能否在犯错误的概率不超过的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.现在从本次调查的“环保达人”中利用分层抽样的方法随机抽取5名市民参与环保知识问答,再从这5名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“环保达人”又有女“环保达人”的概率.
附表及公式:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com