精英家教网 > 高中数学 > 题目详情
设数列{an}的首项a1
1
4
,且an+1=
1
2
an
n是偶
an+
1
4
n是奇
,记bn=a2n-1-
1
4
,n=1,2,3…
(Ⅰ)求a2,a3
(Ⅱ)判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)求
lim
n→∞
(b1+b2+…+bn
分析:(I)根据题设条件,分别令n=1,2,能够求出a2和a3
(II)由a4=a3+
1
4
=
1
2
a+
3
8
,知a5=
1
2
a4=
1
4
a+
3
16
,所以b1=a1-
1
4
=a-
1
4
,b2=a3-
1
4
=
1
2
(a-
1
4
),b3=a5-
1
4
=
1
4
(a-
1
4
),猜想:{bn}是公比为
1
2
的等比数列.再用题设条件进行证明.
(III)
lim
n→∞
(b1+b2+…+bn)=
lim
n→∞
lim
n→∞
b1(1-
1
2n
)
1-
1
2
=
b1
1-
1
2
,由此能求出其结果.
解答:解:(I)a2=a1+
1
4
=a+
1
4
,a3=
1
2
a2=
1
2
a+
1
8

(II)∵a4=a3+
1
4
=
1
2
a+
3
8
,所以a5=
1
2
a4=
1
4
a+
3
16

所以b1=a1-
1
4
=a-
1
4
,b2=a3-
1
4
=
1
2
(a-
1
4
),b3=a5-
1
4
=
1
4
(a-
1
4
),
猜想:{bn}是公比为
1
2
的等比数列•
证明如下:
因为bn+1=a2n+1-
1
4
=
1
2
a2n-
1
4
=
1
2
(a2n-1-
1
4
)=
1
2
bn,(n∈N*)
所以{bn}是首项为a-
1
4
,公比为
1
2
的等比数列.
(III)
lim
n→∞
(b1+b2+…+bn)=
lim
n→∞
lim
n→∞
b1(1-
1
2n
)
1-
1
2
=
b1
1-
1
2
=2(a-
1
4
).
点评:本题考查数列的极限和运用,解题时要认真审题,注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
3
2
,前n项和为Sn,且满足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an
(Ⅱ)求满足
18
17
S2n
Sn
8
7
的所有n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=a≠
1
4
,且an+1=
1
2
an
(n为偶数)
an+
1
4
(n为奇数)
,n∈N*,记bn=a2n-1-
1
4
cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)当a>
1
4
时,数列{cn}前n项和为Sn,求Sn最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
1
2
,且an+1=
2an
1+an
(n∈N*).
(1)求a2,a3,a4
(2)根据上述结果猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区二模)设数列{an}的首项a1=-
1
2
,前n项和为Sn,且对任意n,m∈N*都有
Sn
Sm
=
n(3n-5)
m(3m-5)
,数列{an}中的部分项{abk}(k∈N*)成等比数列,且b1=2,b2=4.
(Ⅰ)求数列{an}与{bn}与的通项公式;
(Ⅱ)令f(n)=
1
bn+1
,并用x代替n得函数f(x),设f(x)的定义域为R,记cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)(n∈N*)
,求
n
i=1
1
cici+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
5
4
,且an+1=
1
2
a
n
,n为偶数
an+
1
4
,n为奇数
,记bn=a2n-1-
1
4
,n=1,2,3,…
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若设数列{cn}的前n项和为Sn,cn=nbn,求Sn

查看答案和解析>>

同步练习册答案