精英家教网 > 高中数学 > 题目详情
如图所示,在边长为60cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

解:设箱子的底边长为xcm,则箱子高h=
箱子容积V=V(x)=x2h=(0<x<60),
求V(x)的导数,得V′(x)==0,
解得x1=0(不合题意,舍去),x2=40,
当x在(0,60)内变化时,导数V′(x)的正负如下表:
 
因此在x=40处,函数V(x)取得极大值,并且这个极大值就是函数V(x)的最大值,
将x=40代入V(x)得最大容积V=402×
答:箱子底边长取40cm时,容积最大,最大容积为16000cm3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=
6
,AP=4AF.
(Ⅰ)求证:PO⊥底面ABCD;
(Ⅱ)求直线CP与平面BDF所成角的大小;
(Ⅲ)在线段PB上是否存在一点M,使得CM∥平面BDF?如果存在,求
BM
BP
的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:单元双测 同步达标活页试卷 高二数学(下A) 人教版 题型:013

如图所示,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF=,EF与面AC的距离为2,则该多面体的体积为

[  ]

A.

B.5

C.6

D.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:013

如图所示,在多面体ABCDEF中,已知ABCD是边长为3的正方形,EF∥AB,,EF与面AC的距离为2,则该多面体的体积为

[  ]

A.
B.5
C.6
D.

查看答案和解析>>

科目:高中数学 来源: 题型:013

如图所示,在多面体ABCDEF中,已知ABCD是边长为3的正方形,EFABEF与面AC的距离为2,则该多面体的体积为

[  ]

A

B5

C6

D

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省郴州市高三下学期第六次月考理科数学 题型:解答题

(本小题满分13分)

如图5所示 :在边长为的正方形中,,且

分别交两点, 将正方形沿折叠,使得重合,

构成如图6所示的三棱柱 .

 ( I )在底边上有一点,且::, 求证:平面 ;

 ( II )求直线与平面所成角的正弦值

 

 

 

查看答案和解析>>

同步练习册答案