精英家教网 > 高中数学 > 题目详情

【题目】证明f(x)=﹣x2+3在(0,+∞)上是减函数.

【答案】证法一:设0<x1<x2

=
∵0<x1<x2
∴x2+x1>0,x2﹣x1>0,
∴f(x1)﹣f(x2)>0
∴f(x1)>f(x2),
∴f(x)=﹣x2+3在(0,+∞)上是增函数
证法二:∵f(x)=﹣x2+3,
∴f′(x)=﹣2x,
当x∈(0,+∞)时,
f′(x)<0恒成立,
∴f(x)=﹣x2+3在(0,+∞)上是增函数
【解析】证法一:设0<x1<x2 , 作差判断f(x1)与f(x2)的大小,根据函数单调性的定义,可得f(x)=﹣x2+3在(0,+∞)上是减函数.
证法二:求导,根据当x∈(0,+∞)时,f′(x)<0恒成立,可得:f(x)=﹣x2+3在(0,+∞)上是增函数
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如下表:

与教育有关

与教育无关

合计

30

10

40

35

5

40

合计

65

15

80

1)能否在犯错误的概率不超过5%的前提下,认为师范类毕业生从事与教育有关的工作与性别有关

参考公式:).

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.023

6.635

2)求这80位师范类毕业生从事与教育有关工作的频率;

3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数存在两个零点.

1)求实数的取值范围;

2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范围;
(2)在(1)的范围内求y=g(x)﹣f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在(﹣1,+∞)内的增函数,且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a﹣1)+2
求:
(1)f(9)的值,
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知海岛A到海岸公路BC的距离AB=50km,B,C间的距离为100km,从A到C必须先坐船到BC上的某一点D,航速为25km/h,再乘汽车到C,车速为50km/h,记∠BDA=θ
(1)试将由A到C所用的时间t表示为θ的函数t(θ);
(2)问θ为多少时,由A到C所用的时间t最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,且 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)是定义在R上的偶函数,在(﹣∞,0]上单调递减,且f(﹣4)=0,则使得x|f(x)+f(﹣x)|<0的x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:
①y=x2+1,x∈[﹣1,2],y的值域[2,5]是;
②幂函数图象一定不过第四象限;
③函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);
④若loga >1,则a的取值范围是( ,1);
⑤函数f(x)= + 是既奇又偶的函数;
其中正确的序号是

查看答案和解析>>

同步练习册答案