精英家教网 > 高中数学 > 题目详情

椭圆+=1(a>b>0)上一点A关于原点的对称点为B, F为其右焦点, 若AF⊥BF, 设∠ABF=, 且∈[,], 则该椭圆离心率的取值范围为            (       )

A.[,1 )          B.[,]       C.[, 1)          D.[,

 

【答案】

B

【解析】

试题分析:设左焦点,连结所以四边形是正方形

 

 

考点:椭圆离心率

点评:求椭圆离心率的范围首先要根据椭圆的几何性质找到关于的齐次不等式,求解即可得到离心率范围

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆+=1 (a>b>0)的左焦点到右准线的距离为,中心到准线的距离为,则椭圆的方程为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆+=1 (a>b>0)的两准线间的距离为,离心率为,则椭圆的方程为(    )

A. +=1                                      B. +=1

C. +=1                                      D. +=1

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:选择题

如图所示,已知A,B分别为椭圆+=1(a>b>0)的右顶点和上顶点,直线lAB,lx轴、y轴分别交于C,D两点,直线CE,DF为椭圆的切线,CEDF的斜率之积kCE·kDF等于(  )

(A)± (B)±

(C)± (D)±

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:解答题

设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,P(a,b)满足|PF2|=|F1F2|.

(1)求椭圆的离心率e;

(2)设直线PF2与椭圆相交于A,B两点.若直线PF2与圆(x+1)2+(y-)2=16相交于M,N两点,|MN|=|AB|,求椭圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013届陕西省高二上学期期中文科数学试卷 题型:选择题

已知双曲线=1和椭圆+=1(a>0,m>b>0)的离心率互为倒数,那么以ab为边长的三角形是(    )                      

A.锐角三角形    B.直角三角形    C.钝角三角形    D.锐角或钝角三角形

 

查看答案和解析>>

同步练习册答案