精英家教网 > 高中数学 > 题目详情

已知f(x)=(数学公式x-log2x,实数a、b、c满足f(a)f(b)f(c)<0,(0<a<b<c)若实数x0是方程f(x)=0的一个解,那么下列不等式中,不可能成立的是


  1. A.
    x0<a
  2. B.
    x0>b
  3. C.
    x0<c
  4. D.
    x0>c
D
分析:有f(a)f(b)f(c)<0可得①f(a),f(b),f(c)都为负值;②(a)>0,f(b)>0,f(c)<0,对这两种情况利用图象分别研究可得结论
解答:解:因为f(x)=(x-log2x,在定义域上是减函数,
所以0<a<b<c时,f(a)>f(b)>f(c)
又因为f(a)f(b)f(c)<0,
所以一种情况是f(a),f(b),f(c)都为负值,①,
另一种情况是f(a)>0,f(b)>0,f(c)<0.②
在同一坐标系内画函数y=(x与y=log2x的图象如下,
对于①要求a,b,c都大于x0
对于②要求a,b都小于x0是,c大于x0
两种情况综合可得x0>c不可能成立
故选D.
点评:本题考查函数零点的判定和数形结合思想的应用.,数形结合的应用大致分两类:一是以形解数,即借助数的精确性,深刻性来讲述形的某些属性;二是以形辅数,即借助与形的直观性,形象性来揭示数之间的某种关系,用形作为探究解题途径,获得问题结果的重要工具
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其单调性(无需证明).
(2)求使f(x)<0的x取值范围.
(3)设h-1(x)是h(x)=log2x的反函数,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省大连八中高考数学模拟试卷(理科)(解析版) 题型:选择题

已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x>0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为( )
A.{x|x<-1或x>1}
B.{x|x<-1或0<x<1}
C.{x|-1<x<0或0<x<1}
D.{x|-1<x<1,且x≠0}

查看答案和解析>>

科目:高中数学 来源:2013年辽宁省大连八中高考适应性考试数学试卷(理科)(解析版) 题型:选择题

已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x>0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为( )
A.{x|x<-1或x>1}
B.{x|x<-1或0<x<1}
C.{x|-1<x<0或0<x<1}
D.{x|-1<x<1,且x≠0}

查看答案和解析>>

同步练习册答案