精英家教网 > 高中数学 > 题目详情
15.已知α,β均为锐角,且$sinα=\frac{1}{2}sin({α+β})$,则α,β的大小关系是(  )
A.α<βB.α>βC.α=βD.不确定

分析 利用两角和与差的正弦函数公式 解得2sinα=sinαcosβ+cosαsinβ,从而得到tanα=$\frac{sinβ}{2-cosβ}$<$\frac{sinβ}{cosβ}$=tanβ,由此能比较α,β的大小关系.

解答 解:∵sin(α+β)=sinαcosβ+cosαsinβ,$sinα=\frac{1}{2}sin({α+β})$,
∴2sinα=sinαcosβ+cosαsinβ,
∴sinα(2-cosβ)=cosαsinβ,
∴tanα=$\frac{sinβ}{2-cosβ}$<$\frac{sinβ}{cosβ}$=tanβ,
∵α,β均为锐角,∴α<β.
故选:A.

点评 本题考查两个锐角的大小的比较,考查两角和与差的正弦函数的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:
使用年限x(年)23456
维修费用y(万元)2.23.85.56.57.0
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归直线方程;
(2)根据回归直线方程,估计使用年限为20年时,维修费用是多少?
回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的系数为:$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{b}=\overline{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知方程$\frac{{x}^{2}}{1+k}-\frac{{y}^{2}}{1-k}$=1表示双曲线,则k的取值范围是-1<k<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合P={x|x≤a},Q={y|y=sinθ,θ∈R}.若P?Q,则实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的首项a1=2015,数列{an}前n项和记为Sn,前n项积记为Tn
(1)若${S_3}=\frac{6045}{4}$,求等比数列{an}的公比q;
(2)在(1)的条件下,判断|Tn|与|Tn+1|的大小;并求n为何值时,Tn取得最大值;
(3)在(1)的条件下,证明:若数列{an}中的任意相邻三项按从小到大排列,则总可以使其
成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为d1,d2,…,dn,则数列{dn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若cos ($\frac{π}{3}$-α)=$\frac{3}{5}$,则cos($\frac{2π}{3}$+α)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点P到点F(3,0)的距离比它到直线x=-2的距离大1,则点P满足的方程为y2=12x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,依此类推,统计结果如表:
停靠时间 2.5 3.5 4 4.5 5 5.5 6
 轮船数量 12 12 17 20 15 13 83
(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为a小时,求a的值;
(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠a小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.cos2017°=(  )
A.-cos37°B.cos37°C.-cos53°D.cos53°

查看答案和解析>>

同步练习册答案