精英家教网 > 高中数学 > 题目详情
对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”;若f[f(x)]=x,则称x为f(x)的“周期点”,函数f(x)的“不动点”和“周期点”的集合分别记为A和B即A={x|f(x)=x},B={x|f[f(x)=x]}.
(1)求证:A⊆B
(2)若f(x)=ax2-1(a∈R,x∈R),且A=B≠∅,求实数a的取值范围.
分析:(I)分A=∅和A≠∅的情况,然后根据所给“不动点”和“稳定点”的定义来证明.
(II)理解A=B时,它表示方程ax2-1=x与方程a(ax2-1)2-1=x有相同的实根,根据这个分析得出求出a的值.
解答:证明:(1)?x∈A,即f(x)=x.
则有f[f(x)]=f(x)=x,x∈B
∴A⊆B
(2)∵f(x)=ax2-1
∴f[f(x)]=a(ax2-1)2-1
若f[f(x)]=x,则a(ax2-1)2-1-x=0a(ax2-1)2-1-x=a(ax2-1)2-ax2+ax2-x-1=a[(ax2-1)2-x2]+ax2-x-1=a(ax2-x-1)(ax2+x-1)+ax2-x-1=(ax2-x-1)(a2x2+ax-a+1)
∴B={x|(ax2-x-1)(a2x2+ax-a+1)=0}A={x|ax2-x-1=0}
当a=0时,A={-1},B={-1},A=B≠∅
∴a=0符合题意
当a≠0时,当A=B≠∅时,方程ax2-x-1=0有实根;对方程a2x2+ax-a+1=0根的情况进行分类讨论:
①若方程a2x2+ax-a+1=0有两个不相等的实根,则
1+4a>0
a2-4a2(1-a)>0
a≠0

此时a>
3
4
.此时两个方程没有公共解,集合B中有四个元素.不合题意,舍去.
②若方程a2x2+ax-a+1=0有两个相等的实根,则
1+4a≥0
a2-4a2(1-a)=0
a≠0

解得a=
3
4
.此时方程ax2-x-1=0的两根分别为-
2
3
 ,  2
;a2x2+ax-a+1=0的实根为x1=x2=-
2
3
.验证得:A=B={-
2
3
 ,  2}

③若方程a2x2+ax-a+1=0无实根,此时A=B.则
1+4a≥0
a2-4a2(1-a)<0
a≠0

解得:-
1
4
≤a<
3
4
且a≠0.
从而所求a的取值范围为{a|-
1
4
≤a≤
3
4
}
点评:本题考查对新概念的理解和运用的能力,同时考查了集合间的关系和方程根的相关知识,解题过程中体现了分类讨论的数学思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),若存在区间M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”.给出下列4个函数:
①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
π2
x
;④f(x)=ex.其中存在“稳定区间”的函数有
 
(填出所有满足条件的函数序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若在其定义域内存在两个实数a,b(a<b),使当x∈[a,b]时,f(x)的值域也是[a,b],则称函数f(x)为“科比函数”.若函数f(x)=k+
x+2
是“科比函数”,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数
f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2
(1)若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:
12
<m<1;
(2)若|x1|<2且|x1-x2|=2,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若f(x0)=x0,则称x0为f(x)的:“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f[f(x)]=x}.
(1)设函数f(x)=ax2+bx+c(a≠0),且A=∅,求证:B=∅;
(2)设函数f(x)=3x+4,求集合A和B,并分析能否根据(1)(2)中的结论判断A=B恒成立?若能,请给出证明,若不能,请举以反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使得f(x0)=x0,则称x0为函数f(x)的不动点.若函数f(x)=
x2+a
bx-c
(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-
1
2

(1)试求函数f(x)的单调区间,
(2)已知各项不为0的数列{an}满足4Sn•f(
1
an
)=1,其中Sn表示数列{an}的前n项和,求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前题条件下,设bn=-
1
an
,Tn表示数列{bn}的前n项和,求证:T2011-1<ln2011<T2010

查看答案和解析>>

同步练习册答案