精英家教网 > 高中数学 > 题目详情

【题目】已知动点是圆 上的任意一点,点与点的连线段的垂直平分线和相交于点.

(I)求点的轨迹方程;

(II)过坐标原点的直线交轨迹于点 两点,直线与坐标轴不重合. 是轨迹上的一点,若的面积是4,试问直线 的斜率之积是否为定值,若是,求出此定值,否则,说明理由.

【答案】(1) (2) 直线 的斜率之积是定值

【解析】试题分析:(I)由题意得,利用椭圆的定义,得点的轨迹是以为焦点的椭圆,进而得到椭圆的方程;

(II)设直线的方程为,联立发出来,求解,设所在直线方程为,联立椭圆方程得的坐标,再求得点到直线的距离,根据面积列出方程,得到的方程,即可求解的值.

试题解析:

(I)由题意, ,又∵

∴点的轨迹是以为焦点的椭圆,其中

∴椭圆的方程为.

(II)设直线的方程为,联立,得

所在直线方程为,联立椭圆方程得

到直线的距离.

,解得

∴直线 的斜率之积是定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点, 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (为参数),曲线的参数方程为 (为参数),曲线的极坐标方程为.

(1)求曲线的公共点的极坐标;

(2)若为曲线上的一个动点,求到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数满足

1)求函数的解析式;

2)若函数,是否存在实数使得的最小值为0?若存在,求出的值;若不存在,说明理由;

3)若函数,是否存在实数,使函数上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的值域:

1;(2;(3

4;(5;(6.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】借助计算器填写下表:

0

1

10

20

30

50

70

100

150

200

250

300

观察表中的变化并归纳各函数递增的规律:

1)一次函数与幂函数之间比较得出的规律;

2)幂函数与指数函数之间比较得出的规律;

3)指数函数之间比较得出的规律.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为实常数)

I)当时,求函数上的最大值及相应的值;

II)当时,讨论方程根的个数.

III)若,且对任意的,都有,求

实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地居民用水采用阶梯水价,其标准为:每户每月用水量不超过15吨的部分,每吨3元;超过15吨但不超过25吨的部分,每吨4.5元;超过25吨的部分,每吨6.

(1)求某户居民每月需交水费(元)关于用水量(吨)的函数关系式

(2)若户居民某月交水费67.5元,求户居民该月的用水量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若不等式的解集为,求的取值范围;

(2)当时,解不等式

(3)若不等式的解集为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sin2xcos2x2sinxcosxxR.

1)求fx)的单调递增区间;

2)求函数fx)在区间[]上的最大值和最小值.

查看答案和解析>>

同步练习册答案