精英家教网 > 高中数学 > 题目详情

【题目】矩形ABCD的面积为4,如果矩形的周长不大于10,则称此矩形是“美观矩形”.

(1)当矩形ABCD是“美观矩形”时,求矩形周长的取值范围;

(2)就矩形ABCD的一边长x的不同值,讨论矩形是否是“美观矩形”?

【答案】(1);(2)当x∈[1,4]时,矩形是“美观矩形”,当x∈(0,1)∪(4,+∞)时,矩形不是“美观矩形”.

【解析】

(1)根据基本不等式和定义即可得出周长的范围;

(2)令周长不大于10,列不等式求出x的范围,得出结论.

(1)设AB=x,则,故而矩形ABCD的周长为

当且仅当即x=2时取等号.又矩形ABCD是“美观矩形”,故而矩形的周长不大于10.

∴当矩形ABCD是“美观矩形”时,矩形周长的取值范围是[8,10].

(2)设矩形ABCD的周长为f(x),则

令f(x)≤10得,解得:1≤x≤4,

∴当x∈[1,4]时,矩形是“美观矩形”,当x∈(0,1)∪(4,+∞)时,矩形不是“美观矩形”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:y=x+m﹣2的图象不经过第二象限,命题q:方程x2+ =1表示焦点在x轴上的椭圆. (Ⅰ)试判断p是q的什么条件;
(Ⅱ)若p∧q为假命题,p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(﹣1,f(﹣1))处的切线程为6x﹣y+7=0.

(1)求函数y=f(x)的解析式;

(2)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·龙泉驿区一中]交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,且保费与上一年车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和费率浮动比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮

上两个年度未发生有责任道路交通事故

下浮

上三个以及以上年度未发生有责任道路交通事故

下浮

上一个年度发生一次有责任不涉及死亡的道路交通事故

上一个年度发生两次及两次以上有责任道路交通事故

上浮

上一个年度发生有责任道路交通死亡事故

上浮

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了70辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

13

7

20

14

6

(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损6000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商店内有7辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆,求这2辆车恰好有一辆为事故车的概率;

②若该销售商一次性购进70辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为D,若存在闭区间[a,b]D,使得函数f(x)满足:①f(x)在[a,b]内是单调函数;②f(x)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=f(x)的“倍值区间”.下列函数中存在“倍值区间”的有( ) ①f(x)=x2(x≥0);
②f(x)=ex(x∈R);
③f(x)= (x≥0);
④f(x)=
A.①②③④
B.①②④
C.①③④
D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,3anan1+an﹣an1=0(n≥2).
(1)求证:数列{ }等差数列;
(2)数列bn=anan+1 , 求数列bn的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yAsin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示

(1)求此函数的解析式;

(2)求此函数在(﹣2π,2π)上的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次项系数是1的二次函数

时,求方程的实根;

bc都是整数,若有四个不同的实数根,并且在数轴上四个根等距排列,试求二次函数的解析式,使得其所有项的系数和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4一1:几何证明选讲 如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD.
(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

同步练习册答案