精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.

(Ⅰ)求抛物线的方程;

(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;

(Ⅲ)若点的横坐标为,直线与抛物线有两个不同的交点与圆有两个不同的交点,求当时,的最小值.

 

【答案】

: (Ⅰ)

(Ⅱ)存在,点的坐标为

(Ⅲ)当时,的最小值为

【解析】:(Ⅰ)

 

 

如图,取的中点,即

所以抛物线的方程为

(Ⅱ)

设存在点使得直线与抛物线相切于点

得切线的斜率为直线的方程为

,代入

化简得

是抛物线上位于第一象限内的点,所以

所以所求的点的坐标为

(Ⅲ)由(Ⅱ)可知

到直线的距离的平方为

所以.

联立

所以,

,

由于,所以

.

时,为增函数,

所以

即当时,的最小值为

【考点定位】本题通过抛物线和圆的性质确定抛物线方程,呈现出对基础知识的考查。并进一步把问题深化,考查了切线方程的求法,点到直线的距离公式,曲线的弦长运算等,最后通过导数工具求得结果,有很强的综合性,着力体现了能力考查

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案