精英家教网 > 高中数学 > 题目详情

(湖北理21)(本小题满分14分)

已知mn为正整数.

(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx

(Ⅱ)对于n≥6,已知,求证m=1,1,2…,n

(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n.

见解析


解析:

假设存在正整数成立,

即有()+=1.  ②

又由(Ⅱ)可得

)+

+与②式矛盾,

故当n≥6时,不存在满足该等式的正整数n.

故只需要讨论n=1,2,3,4,5的情形;

n=1时,3≠4,等式不成立;

n=2时,32+42=52,等式成立;

n=3时,33+43+53=63,等式成立;

n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;

n=5时,同n=4的情形可分析出,等式不成立.

综上,所求的n只有n=2,3.

练习册系列答案
相关习题

同步练习册答案