精英家教网 > 高中数学 > 题目详情
已知函数f(x)=,若关于的方程满足f(x)=m(m∈R)有且仅有三个不同的实数根,且α,β分别是三个根中最小根和最大根,则的值为   
【答案】分析:同一坐标系内作出函数y=f(x)的图象和直线y=m,因为两图象有且仅有三个公共点,所以m=1.再解方程f(x)=1,得最小根β=,最大根α=,将它们代入再化简,即可得到要求值式子的值.
解答:解:函数f(x)=的图象如下图所示:
可得函数f(x)的单调减区间为(-∞,-)和(,π);
单调增区间为(-)和(π,+∞),
f(x)的极大值为f()=1,极小值为f(-)=-和f(π)=0
将直线y=m进行平移,可得当m=1时,两图象有且仅有三个不同的公共点,
相应地方程f(x)=m(m∈R)有且仅有三个不同的实数根.
令f(x)=1,得x1=,x2=,x3=,所以β=,α=
∴β•sin(+α)=•sin=•(-)=
故答案为:
点评:本题以分段函数为例,求方程的最大根和最小根,并且用这个根来求值,着重考查了函数与方程的关系,以及三角函数求值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案