精英家教网 > 高中数学 > 题目详情
(2012•普陀区一模)已知直线l的方程为2x-y-3=0,点A(1,4)与点B关于直线l对称,则点B的坐标为
(5,2)
(5,2)
分析:利用点A(1,4)与点B关于直线l对称,从而线段AB被对称轴垂直平分,由此建立方程组,即可求得结论.
解答:解:设点B的坐标为(x,y),则
∵点A(1,4)与点B关于直线l对称,
y-4
x-1
×2=-1
x+1
2
-
y+4
2
-3=0

∴x=5,y=2
∴B(5,2)
故答案为:(5,2)
点评:本题考查点关于直线的对称点,解题的关键是利用线段AB被对称轴垂直平分,建立方程组.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•普陀区一模)
e
1
e
2
是两个不共线的向量,已知
AB
=2
e
1
+k
e
2
CB
=
e
1
+3
e
2
CD
=2
e
1
-
e
2
,且A,B,D三点共线,则实数k=
-8
-8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)设全集为R,集M={x|
x2
4
+y2=1
},N={x|
x-3
x+1
≤0
},则集合{x|(x+
3
2
)
2
+y2=
1
4
}可表示为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)已知数列{an}是首项为2的等比数列,且满足an+1=pan+2n(n∈N*)
(1)求常数p的值和数列{an}的通项公式;
(2)若抽去数列中的第一项、第四项、第七项、…第3n-2项,…,余下的项按原来的顺序组成一个新的数列{bn},试写出数列
{bn}的通项公式;
(3)在(2)的条件下,设数列{bn}的前n项和为Tn,是否存在正整数n,使得
Tn+1
Tn
=
11
3
?若存在,试求所有满足条件的正整数n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)对于平面α、β、γ和直线a、b、m、n,下列命题中真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)函数y=
1
log
1
2
|x-1|
的定义域是
(0,1)∪(1,2)
(0,1)∪(1,2)

查看答案和解析>>

同步练习册答案